Browse > Article
http://dx.doi.org/10.12989/sss.2021.28.6.761

Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone  

Dang, Ngoc-Loi (Department of Ocean Engineering, Pukyong National University)
Pham, Quang-Quang (Department of Ocean Engineering, Pukyong National University)
Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
Publication Information
Smart Structures and Systems / v.28, no.6, 2021 , pp. 761-777 More about this Journal
Abstract
This study presents a numerical investigation on the sensitivity of electromechanical (EM) impedance responses to inner damaged concrete of a prestressed anchorage zone. Firstly, the Ottosen yield criterion is selected to simulate the plasticity behavior of the concrete anchorage zone under the compressive loading. Secondly, several overloading cases are selected to analyze inner damage formations in the concrete of the anchorage zone. Using a finite element (FE) model of the anchorage zone, the relationship between applied forces and stresses is analyzed to illustrate inner plasticity regions in concrete induced by the overloading. Thirdly, EM impedance responses of surface-mounted PZT (lead-zirconate-titanate) sensors are numerically acquired before and after concrete damage occurrence in the anchorage zone. The variation of impedance responses is estimated using the RMSD (root-mean-square-deviation) damage metric to quantify the sensitivity of the signals to inner damaged concrete. Lastly, a novel PZT skin, which can measure impedance signatures in predetermined frequency ranges, is designed for the anchorage zone to sensitively monitor the EM impedance signals of the inner damaged concrete. The feasibility of the proposed method is numerically evaluated for a series of damage cases of the anchorage zone. The results reveal that the proposed impedance-based method is promising for monitoring inner damaged concrete in anchorage zones.
Keywords
anchorage zone; concrete damage; electromechanical impedance; piezoelectric skin sensor; prestressed concrete structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Henault, J.M., Quiertant, M., Delepine-Lesoille, S., Salin, J., Moreau, G., Taillade, F. and Benzarti, K. (2012), "Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system", Constr. Build. Mater., 37, 916-923. https://doi.org/10.1016/j.conbuildmat.2012.05.029   DOI
2 Dang, N.L., Pham, Q.Q. and Kim, J.T. (2020b), "Piezoelectric-based hoop-type interface for impedance monitoring of local strand breakage in prestressed multi-strand anchorage", Struct. Control Health Monitor., 28(1). https://doi.org/10.1002/stc.2649   DOI
3 Hou, D.W., Zhao, J.L., Shen, J.S.L. and Chen, J. (2017), "Investigation and improvement of strut-and-tie model for design of end anchorage zone in post-tensioned concrete structure", Constr. Build. Mater., 136, 482-494. https://doi.org/10.1016/j.conbuildmat.2017.01.033   DOI
4 Min, J., Yun, C.B. and Hong, J.W. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., Int. J., 17(1), 107-122. https://doi.org/10.12989/sss.2016.17.1.107   DOI
5 Nawy, E.G. (2010), Prestressed Concrete: A Fundamental Approach, Prentice Hall.
6 Xia, Y., Langelaar, M. and Hendriks, M.a.N. (2020), "A critical evaluation of topology optimization results for strut-and-tie modeling of reinforced concrete", Comput.-Aided Civil Infrastruct. Eng., 35(8), 850-869. https://doi.org/10.1111/mice.12537   DOI
7 Hofstetter, B.V.G. (2013), "Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures", Int. J. Numer. Anal. Methods Geomech., 37(3), 221-246. https://doi.org/10.1002/nag.1096   DOI
8 Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A. and Calonius, K. (2021), "Anisotropic damage model for concrete and other quasi-brittle materials", Int. J. Solids Struct., 225. https://doi.org/10.1016/j.ijsolstr.2021.111048   DOI
9 VSL (20180, VSL Strand Post-tensioning systems. Available online (accessed on 12 June 2018): http://www.daorenc.com/kr/wp-content/uploads/2016/05/pt.pdf
10 Wu, J., Xian, G. and Li, H. (2018), "A novel anchorage system for CFRP cable: Experimental and numerical investigation", Compos. Struct., 194, 555-563. https://doi.org/10.1016/j.compstruct.2018.04.006   DOI
11 Yao, Y., Tung, S.T.E. and Glisic, B. (2014), "Crack detection and characterization techniques-An overview", Struct. Control Health Monitor., 21(12), 1387-1413. https://doi.org/10.1002/stc.1655   DOI
12 Ottosen, N.S. and Ristinmaa, M. (2005), The mechanics of constitutive modeling, Elsevier.
13 Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029   DOI
14 He, Z.Q. and Liu, Z. (2010), "Optimal three-dimensional strut-and-tie models for anchorage diaphragms in externally prestressed bridges", Eng. Struct., 32(8), 2057-2064. https://doi.org/10.1016/j.engstruct.2010.03.006   DOI
15 Zhang, C., Yan, Q., Panda, G.P., Wu, W., Song, G. and Vipulanandan, C. (2020a), "Real-time monitoring stiffness degradation of hardened cement paste under uniaxial compression loading through piezoceramic-based electromechanical impedance method", Constr. Build. Mater., 256. https://doi.org/10.1016/j.conbuildmat.2020.119395   DOI
16 Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021   DOI
17 Zhang, X., Wu, H., Li, J., Pi, A. and Huang, F. (2020b), "A constitutive model of concrete based on Ottosen yield criterion", Int. J. Solids Struct., 193-194, 79-89. https://doi.org/10.1016/j.ijsolstr.2020.02.013   DOI
18 Zhao, S., Fan, S. and Chen, J. (2019), "Quantitative assessment of the concrete gravity dam damage under earthquake excitation using electro-mechanical impedance measurements", Eng. Struct., 191, 162-178. https://doi.org/10.1016/j.engstruct.2019.04.061   DOI
19 Okumus, P. and Oliva, M.G. (2013), "Evaluation of crack control methods for end zone cracking in prestressed concrete bridge girders", PCI Journal, 58(2). https://doi.org/10.15554/pcij.03012013.91.105   DOI
20 Ottosen, N.S. (1977), "A failure criterion for concrete", J. Eng. Mech. Div., 103(4), 527-535. https://doi.org/10.1061/JMCEA3.0002248   DOI
21 Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinement-sensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solids Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022   DOI
22 Park, J.H., Kim, J.T., Ryu, Y.S. and Lee, J.M. (2007), "Monitoring cracks and prestress-loss in PSC girder bridges using vibration-based damage detection techniques", In: Health Monitoring of Structural and Biological Systems 2007, International Society for Optics and Photonics. https://doi.org/10.1117/12.720907
23 Park, H.J., Sohn, H., Yun, C.B., Chung, J. and Lee, M.M.S. (2012), "Wireless guided wave and impedance measurement using laser and piezoelectric transducers", Smart Mater. Struct., 21(3). https://doi.org/10.1088/0964-1726/21/3/035029   DOI
24 Putcha, C., Dutta, S. and Rodriguez, J. (2020), "Risk priority number for bridge failures", Practice Period. Struct. Des. Constr., 25(2), 04020010. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000480   DOI
25 Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015), "Wire breakage detection using relative strain variation in unbonded posttensioning anchors", J. Bridge Eng., 20(1), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000639   DOI
26 Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061   DOI
27 Kim, J.T. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132   DOI
28 Roberts, C. (1990), "Behavior and design of the local anchorage zone in post-tensioned concrete", Thesis; The University of Texas, Austin, TX, USA.
29 Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2018), "Tension force estimation in axially loaded members using wearable piezoelectric interface technique", Sensors, 19(1), 1-17. https://doi.org/10.3390/s19010047   DOI
30 AASHTO (2007), LRFD bridge design specifications, SI units, Washington, DC: American Association of State Highway and Transportation.
31 Jang, K., An, Y.K., Kim, B. and Cho, S. (2020), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civil Infrastruct. Eng., 36(1). https://doi.org/10.1111/mice.12550   DOI
32 Schneider, U. (1976), "Behaviour of concrete under thermal steady state and non-steady state conditions", Fire Materials, 1(3), 103-115. https://doi.org/10.1002/fam.810010305   DOI
33 Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118. https://doi.org/10.1016/j.autcon.2020.103291   DOI
34 Yaghoubi, S.T., Kouhia, R., Hartikainen, J. and Kolari, K. (2014), "A continuum damage model based on ottosen's four parameter failure criterion for concrete", J. Struct. Mech., 47, 50-60.
35 Huynh, T.C. and Kim, J.T. (2017a), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181   DOI
36 Huynh, T.C. and Kim, J.T. (2017b), "Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage", Smart Mater. Struct., 26(12), 1-19. https://doi.org/10.1088/1361-665X/aa931b   DOI
37 Ro, K.M., Kim, M.S. and Lee, Y.H. (2020), "Validity of Anchorage Zone Design for Post-Tensioned Concrete Members with High-Strength Strands", Appl. Sci., 10(9). https://doi.org/10.3390/app10093039   DOI
38 Huynh, T.C., Lee, K.S. and Kim, J.T. (2015), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., Int. J., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375   DOI
39 Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105. https://doi.org/10.1016/j.autcon.2019.102844   DOI
40 Jang, K., Kim, N. and An, Y.K. (2019), "Deep learning-based autonomous concrete crack evaluation through hybrid image scanning", Struct. Health Monitor., 18(5-6), 1722-1737. https://doi.org/10.1177/1475921718821719   DOI
41 Jefferson, A.D., Mihai, I.C., Tenchev, R., Alnaas, W.F., Cole, G. and Lyons, P. (2016), "A plastic-damage-contact constitutive model for concrete with smoothed evolution functions", Comput. Struct., 169, 40-56. https://doi.org/10.1016/j.compstruc.2016.02.008   DOI
42 Breen, J.E. (1994), Anchorage zone reinforcement for posttensioned concrete girders, Transportation Research Board. (https://trid.trb.org/view/388973)
43 Eringen, A.C., Speziale, C. and Kim, B. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solids, 25(5), 339-355. https://doi.org/10.1016/0022-5096(77)90002-3   DOI
44 Dang, N.L., Huynh, T.C. and Kim, J.T. (2019), "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study", Sensors, 19(5). https://doi.org/10.3390/s19051054   DOI
45 Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance", Mech. Syst. Signal Process., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046   DOI
46 Alejano, L.R. and Bobet, A. (2012), Drucker-prager criterion, In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, pp. 247-252. https://doi.org/10.1007/978-3-319-07713-0 (see https://www.springer.com/gp/book/9783319077123)
47 Bastien, J., Marceau, D., Fafard, M. and Ganz, H.R. (2007), "Use of FEA for design of posttensioning anchor head", J. Bridge Eng., 12(2), 194-204. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(194)   DOI
48 Lee, S. and Kalos, N. (2014), "Non-destructive testing methods in the US for bridge inspection and maintenance", KSCE J. Civil Eng., 18(5), 1322-1331. https://doi.org/10.1007/s12205-014-0633-9   DOI
49 Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", Journal Proceedings.
50 Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)   DOI
51 Liang, C., Sun, F. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006   DOI
52 Lim, Y.Y. and Soh, C.K. (2012), "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique", J. Intell. Mater. Syst. Struct., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888   DOI
53 Grosse, C.U. (2009), "Acoustic emission localization methods for large structures based on beam forming and array techniques", Proceedings of the NDTCE, 9.
54 Yang, Y., Hu, Y. and Lu, Y. (2008), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8(1), 327-346. https://doi.org/10.3390/s8010327   DOI
55 Cervenka, V. and Ganz, H.R. (2014), "Validation of post-tensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038   DOI
56 Chauthoi620 (2018), Dam I, (Accessed on, May 7, 2018). https://620chauthoi.com/san-pham/dam-i33/
57 Ai, D., Luo, H., Wang, C. and Zhu, H. (2018), "Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers", Eng. Struct., 154, 38-51. https://doi.org/10.1016/j.engstruct.2017.10.046   DOI
58 Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020a), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Health Monitor., 27, e2547. https://doi.org/10.1002/stc.2547   DOI
59 Darwin, D., Dolan, C.W. and Nilson, A.H. (2016), Design of Concrete Structures, McGraw-Hill Education, New York.
60 Dragon, A., Halm, D. and Desoyer, T. (2000), "Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications", Comput. Methods Appl. Mech. Eng., 183(3-4), 331-352. https://doi.org/10.1016/S0045-7825(99)00225-X   DOI
61 Guyon, Y. (1974), Limit-State Design of Prestressed Concrete, John Wiley & Sons.
62 Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage Theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)   DOI
63 Loutridis, S., Douka, E. and Hadjileontiadis, L.J. (2005), "Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency", NDT & E Int., 38(5), 411-419. https://doi.org/10.1016/j.ndteint.2004.11.004   DOI
64 Lu, X., Lim, Y.Y. and Soh, C.K. (2017), "A novel electromechanical impedance-based model for strength development monitoring of cementitious materials", Struct. Health Monitor., 17(4), 902-918. https://doi.org/10.1177/1475921717725028   DOI