• Title/Summary/Keyword: Anatomic models

Search Result 28, Processing Time 0.033 seconds

Recurrence after Anatomic Resection Versus Nonanatomic Resection for Hepatocellular Carcinoma: A Meta-analysis

  • Ye, J.Z.;Miao, Z.G.;Wu, F.X.;Zhao, Y.N.;Ye, H.H.;Li, L.Q.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1771-1777
    • /
    • 2012
  • The impact of anatomic resection (AR) as compared to non-anatomic resection (NAR) for hepatocellular carcinoma (HCC) as a factor for preventing intra-hepatic and local recurrence after the initial surgical procedure remains controversial. A systematic review and meta-analysis of nonrandomized trials comparing anatomic resection with non-anatomic resection for HCC published from 1990 to 2010 in PubMed and Medline, Cochrane Library, Embase, and Science Citation Index were therefore performed. Intra-hepatic recurrence, including early and late, and local recurrence were considered as primary outcomes. As secondary outcomes, 5 year survival and 5 year disease-free survival were considered. Pooled effects were calculated utilizing either fixed effects or random effects models. Eleven non-randomized studies including 1,576 patients were identified and analyzed, with 810 patients in the AR group and 766 in the NAR group. Patients in the AR group were characterized by lower prevalence of cirrhosis, more favorable hepatic function, and larger tumor size and higher prevalence of macrovascular invasion compared with patients in the NAR group. Anatomic resection significantly reduced the risks of local recurrence and achieved a better 5 years disease-free survival. Also, anatomic resection was marginally effective for decreasing the early intra-hepatic recurrence. However, it was not advantageous in preventing late intra-hepatic recurrence compared with non-anatomic resection. No differences were found between AR and NAR with respect to postoperative morbidity, mortality, and hospitalization. Anatomic resection can be recommended as superior to non-anatomic resection in terms of reducing the risks of local recurrence, early intra-hepatic recurrence and achieving a better 5 year disease-free survival in HCC patients.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES UNDER COMPLETE DENTURES WITH VARIANT ARTIFICIAL TEETH FORMS AND OCCLUSAL PATTERNS (총의치 교합면 형태가 하악골 응력 분포에 미치는 영향에 관한 삼차원 유한요소분석적 연구)

  • Lee Cheol-Gyu;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.351-384
    • /
    • 1993
  • Complete denture occlusion must be developed to function efficiently and with the least amount of trauma to the supporting tissues. For the preservation of supporting tissues, it is imperative to reduce to a minimum the functional stress induced by dentures. The magnitude of the horizontal component of functional stress contributed by various occlusal teeth forms has not been studied. This study was aimed to investigate the influence of different occlusal teeth forms on the mode of distribution of the stresses in the mandibular tissue, and the displacement of lower dentures during the variant functional movement of mandible for this study three dimensional finite element analysis was used. FEM models were created using commercial software Super Sap for IBM 32 bit computer. The model was composed of 3380 brick elements and 4346 nodes. The results were as follows. 1. The magnitude of stress was similar between two models in centric occlusion, in the case of anatomic model, the stress was concentrated on the buccal side of alveolar ridge beneath the bicuspids. 2. During the protrusive movement, the increasing of stress from the posterior to anterior part of mandible was seen in the case of anatomic model. 3. During the lateral movement, the stress of anatomic model was greater than that of nonanatomic model. 4. The stress of anatomic model was concentrated on the anterior region of residual ridge during the lateral movement. 5. In the case of anatomic model the anterior part of denture was displaced severely at the centric and lateral position, but the denture of nonanatomic model was displaced minutely at the protrusive and lateral position.

  • PDF

Influence of threshold value of computed tomography on the accuracy of 3-dimensional medical model (전산화단층 촬영상의 임계치가 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Lee Byeong-Do;Lee Wan
    • Imaging Science in Dentistry
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Purpose: To evaluate the influence of threshold value of computed tomography on the accuracy of rapid prototyping (RP) medical model Material and Methods : CT datas of a human dry skull were transferred from CT scanner via compact disk to a personal computer (PC). 3-dimensional image reconstruction on PC by V-works/sup TM/ 3.0 (CyberMed. Inc.) software and RP models fabrication were followed. 2-RP models were produced by threshold value of 500 and 800 selected in surface rendering process. Linear measurements between arbitrary 12 anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared. Thus, the accuracy of 500 RP and 800RP models was respectively evaluated. Results: There was mean difference (% difference) in absolute value of 2.27 mm (2.73%) between linear measurements of dry skull and 500 RP model. There was mean difference (% difference) in absolute value of 1.94 mm (2.52%) between linear measurements of dry skull and 800 RP model. Conclusion: Slight difference of threshold value in rendering process of 3-D modelling made a influence on the accuracy of RP medical model.

  • PDF

Analysis of SEER Adenosquamous Carcinoma Data to Identify Cause Specific Survival Predictors and Socioeconomic Disparities

  • Cheung, Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.347-352
    • /
    • 2016
  • Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) adenosquamous carcinoma data to identify predictive models and potential disparities in outcome. Materials and Methods: This study analyzed socio-economic, staging and treatment factors available in the SEER database for adenosquamous carcinoma. For the risk modeling, each factor was fitted by a generalized linear model to predict the cause specific survival. An area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. Results: A total of 20,712 patients diagnosed from 1973 to 2009 were included in this study. The mean follow up time (S.D.) was 54.2 (78.4) months. Some 2/3 of the patients were female. The mean (S.D.) age was 63 (13.8) years. SEER stage was the most predictive factor of outcome (ROC area of 0.71). 13.9% of the patients were un-staged and had risk of cause specific death of 61.3% that was higher than the 45.3% risk for the regional disease and lower than the 70.3% for metastatic disease. Sex, site, radiotherapy, and surgery had ROC areas of about 0.55-0.65. Rural residence and race contributed to socioeconomic disparity for treatment outcome. Radiotherapy was underused even with localized and regional stages when the intent was curative. This under use was most pronounced in older patients. Conclusions: Anatomic stage was predictive and useful in treatment selection. Under-staging may have contributed to poor outcome.

Three dimensional analysis of Korean dentogingival complex (한국인 치아치은 집합체구조의 삼차원적인 분석)

  • Park, Yeong-Suk;Lee, Seung-Pyo;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • Purpose: Variation in the morphology of gingival papilla may be determined by the shape and position of anatomic crown as well as contact area and embrasure form of individual teeth. However, periodontal biotype classification is regarded to be subjective because of the lack of definite criteria. In this study, we defined the objective parameters which constitute the periodontal biotype and measured their relationship. Materials and Methods: 109 of dental casts were prepared using three dimensional scanner and specialized reconstruction software, then acquiredvirtual models were sent to the 20 professional dentists to define the specific periodontal biotypes. Several parameters around periodontal structures were measured from the virtual models; facial surface area of the anterior tooth (AT), anterior papillary area (AP), proportion of the dento-papillary complex, clinical papillary length (PL), and clinical papillary angle (PA). Statistical analysis was performed to confirm the relationship among parameters. Results: Coincidence rate of periodontal biotype within observers was $63.77{\pm}16.05%$. Coincidence rate between observers was $76.15{\pm}16.43%$. Among the parameters measured, PL showed the most positive correlations and PA presented the most negative correlations. The parameter of the AP and PL of six maxillary anterior teeth showed significant correlation coefficient. Conclusion: Anterior papillary area and clinical papillary length would be objective parameters for determining the consistent periodontal biotypes.

Comprehensive Analysis of Chicken Vessels as Microvascular Anastomosis Training Model

  • Kang, Bo Young;Jeon, Byung-Joon;Lee, Kyeong-Tae;Mun, Goo-Hyun
    • Archives of Plastic Surgery
    • /
    • v.44 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Background Nonliving chickens are commonly used as a microvascular anastomosis training model. However, previous studies have investigated only a few types of vessel, and no study has compared the characteristics of the various vessels. The present study evaluated the anatomic characteristics of various chicken vessels as a training model. Methods Eight vessels-the brachial artery, basilic vein, radial artery, ulnar artery, ischiatic artery and vein, cranial tibial artery, and common dorsal metatarsal artery-were evaluated in 26 fresh chickens and 30 chicken feet for external diameter (ED) and thicknesses of the tunica adventitia and media. The dissection time from skin incision to application of vessel clamps was also measured. Results The EDs of the vessels varied. The ischiatic vein had the largest ED of $2.69{\pm}0.33mm$, followed by the basilic vein ($1.88{\pm}0.36mm$), ischiatic artery ($1.68{\pm}0.24mm$), common dorsal metatarsal artery ($1.23{\pm}0.23mm$), cranial tibial artery ($1.18{\pm}0.19mm$), brachial artery ($1.08{\pm}0.15mm$), ulnar artery ($0.82{\pm}0.13mm$), and radial artery ($0.56{\pm}0.12mm$), and the order of size was consistent across all subjects. Thicknesses of the tunica adventitia and media were also diverse, ranging from $74.09{\pm}19.91{\mu}m$ to $158.66{\pm}40.25{\mu}m$ (adventitia) and from $31.2{\pm}7.13{\mu}m$ to $154.15{\pm}46.48{\mu}m$ (media), respectively. Mean dissection time was <3 minutes for all vessels. Conclusions Our results suggest that nonliving chickens can provide various vessels with different anatomic characteristics, which can allow trainees the choice of an appropriate microvascular anastomosis training model depending on their purpose and skillfulness.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

Extraction of Heart Region in EBT Images (EBT 영상에서 심장 영역의 추출)

  • Kim, Hyun-Soo;Lee, Sung-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2000
  • It is very important to extract the heart region in the medical images. In this paper, we present the automatic heart region extraction in the EBT (electron beam tomography) images. We use contrast thresholding, anatomic knowledge, and mathematical morphology to extract the heart region. Using these results, we applied the active contour models (snakes) to search the exact region. We analyzed the experimental results by comparing the results with the results made by medical experts.

  • PDF

Nuclear Medicine Imaging Instrumentations for Molecular Imaging (분자영상 획득을 위한 핵의학 영상기기)

  • Chung, Yong-Hyun;Song, Tae-Yong;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.131-139
    • /
    • 2004
  • Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF