References
- Couceiro J, Ozyurekoglu T, Sanders S, et al. Microsurgical training regimen with nonliving chicken models. Microsurgery 2013;33:251-2. https://doi.org/10.1002/micr.22060
- Abla AA, Uschold T, Preul MC, et al. Comparative use of turkey and chicken wing brachial artery models for microvas-cular anastomosis training. J Neurosurg 2011;115:1231-5. https://doi.org/10.3171/2011.7.JNS102013
- Lannon DA, Atkins JA, Butler PE. Non-vital, prosthetic, and virtual reality models of microsurgical training. Microsurgery 2001;21:389-93. https://doi.org/10.1002/micr.21709
- Kim BJ, Kim ST, Jeong YG, et al. An efficient microvascular anastomosis training model based on chicken wings and simple instruments. J Cerebrovasc Endovasc Neurosurg 2013;15:20-5. https://doi.org/10.7461/jcen.2013.15.1.20
- Govila A. A simple model on which to practise microsurgical technique: a fresh chicken. Br J Plast Surg 1981;34:486-7. https://doi.org/10.1016/0007-1226(81)90065-5
- Hino A. Training in microvascular surgery using a chicken wing artery. Neurosurgery 2003;52:1495-7. https://doi.org/10.1227/01.NEU.0000065174.83840.62
- Galeano M, Zarabini AG. The usefulness of a fresh chicken leg as an experimental model during the intermediate stages of microsurgical training. Ann Plast Surg 2001;47:96-7. https://doi.org/10.1097/00000637-200107000-00023
- Satterwhite T, Son J, Echo A, et al. The chicken foot dorsal vessel as a high-fidelity microsurgery practice model. Plast Reconstr Surg 2013;131:311e-312e. https://doi.org/10.1097/PRS.0b013e318278d760
- Elgammal SM, Swielim GA, Khalifa EF, et al. Anatomical studies on the arterial blood supply of the pelvic limb of chicken. Suez Canal Vet Med J 2012;2:171-19.
- Colohan S, Maia M, Langevin CJ, et al. The short- and ultrashort-pedicle deep inferior epigastric artery perforator flap in breast reconstruction. Plast Reconstr Surg 2012;129:331-40. https://doi.org/10.1097/PRS.0b013e31823ae9a3
- Kiray A, Ergur I, Tayefi H, et al. Anatomical evaluation of the superficial veins of the upper extremity as graft donor source in microvascular reconstructions: a cadaveric study. Acta Orthop Traumatol Turc 2013;47:405-10. https://doi.org/10.3944/AOTT.2013.3194
- Feng LJ. Recipient vessels in free-flap breast reconstruction: a study of the internal mammary and thoracodorsal vessels. Plast Reconstr Surg 1997;99:405-16. https://doi.org/10.1097/00006534-199702000-00015
- Xu Z, Chenglin L, Zhiwen N, et al. Use of flap based on posterior tibial artery for free transfer. J Reconstr Microsurg 2007;23:361-5. https://doi.org/10.1055/s-2007-992339
- Doscher M, Charafeddine AH, Schiff BA, et al. Superficial temporal artery and vein as recipient vessels for scalp and facial reconstruction: radiographic support for underused vessels. J Reconstr Microsurg 2015;31:249-53. https://doi.org/10.1055/s-0034-1394160
- Hazani R, Elston J, Brooks D, et al. Bridging the gap in hand replantation: use of the common digital artery for completion of the superficial palmar arch. Plast Reconstr Surg 2010;126:2037-42. https://doi.org/10.1097/PRS.0b013e3181f449e1
- Gillis JA, Prasad V, Morris SF. Three-dimensional analysis of the internal mammary artery perforator flap. Plast Reconstr Surg 2011;128:419e-426e. https://doi.org/10.1097/PRS.0b013e31822b7541
- Qassemyar Q, Havet E, Sinna R. Vascular basis of the facial artery perforator flap: analysis of 101 perforator territories. Plast Reconstr Surg 2012;129:421-9. https://doi.org/10.1097/PRS.0b013e31822b6771
- Thomas BP, Geddes CR, Tang M, et al. The vascular basis of the thoracodorsal artery perforator flap. Plast Reconstr Surg 2005;116:818-22. https://doi.org/10.1097/01.prs.0000176253.42394.7c
- Ozcelik IB, Purisa H, Sezer I, et al. The results of digital replantations at the level of the distal interphalangeal joint and the distal phalanx. Acta Orthop Traumatol Turc 2006;40:62-6.
- Venkatramani H, Sabapathy SR. Fingertip replantation: Technical considerations and outcome analysis of 24 consecutive fingertip replantations. Indian J Plast Surg 2011;44: 237-45. https://doi.org/10.4103/0970-0358.85345
- Chen WF, Eid A, Yamamoto T, et al. A novel supermicrosurgery training model: the chicken thigh. J Plast Reconstr Aesthet Surg 2014;67:973-8. https://doi.org/10.1016/j.bjps.2014.03.024
- Jeong WS, Yun J, Lee TJ, et al. Histologic comparison between the internal mammary artery and the deep inferior epigastric artery and clinical implications for microsurgical breast reconstruction. J Plast Surg Hand Surg 2015;49:234-7. https://doi.org/10.3109/2000656X.2015.1021815
- Phoon AF, Gumley GJ, Rtshiladze MA. Microsurgical training using a pulsatile membrane pump and chicken thigh: a new, realistic, practical, nonliving educational model. Plast Reconstr Surg 2010;126:278e-279e. https://doi.org/10.1097/PRS.0b013e3181ef82e2
Cited by
- The Role of Living Models in the Spending Review Era: How Do You Make the Most of a Rat? vol.44, pp.4, 2017, https://doi.org/10.5999/aps.2017.44.4.349
- Refinement of the chicken wing supermicrosurgical training model: Pre‐operative indocyanide green injection highlighting vessels' visualization under 0.4 mm of diameter vol.39, pp.3, 2017, https://doi.org/10.1002/micr.30414
- The Exoscope versus operating microscope in microvascular surgery: A simulation non-inferiority trial vol.47, pp.3, 2020, https://doi.org/10.5999/aps.2019.01473
- 3D-printed cranial models simulating operative field depth for microvascular training in neurosurgery vol.12, pp.None, 2017, https://doi.org/10.25259/sni_849_2020