• Title/Summary/Keyword: Analyze Data

Search Result 19,234, Processing Time 0.043 seconds

Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data (실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템)

  • Jeong, Seongmin;Yeon, Hanbyul;Jeong, Daekyo;Yoo, Sangbong;Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Risk management system should be able to support a decision making within a short time to analyze stream data in real time. Many analytical systems consist of CPU computation and disk based database. However, it is more problematic when existing system analyzes stream data in real time. Stream data has various production periods from 1ms to 1 hour, 1day. One sensor generates small data but tens of thousands sensors generate huge amount of data. If hundreds of thousands sensors generate 1GB data per second, CPU based system cannot analyze the data in real time. For this reason, it requires fast processing speed and scalability for analyze stream data. In this paper, we present a fast visualization technique that consists of hybrid database and GPU computation. In order to evaluate our technique, we demonstrate a visual analytics system that analyzes pipeline leak using sensor and tweet data.

Research on the Development of Big Data Analysis Tools for Engineering Education (공학교육 빅 데이터 분석 도구 개발 연구)

  • Kim, Younyoung;Kim, Jaehee
    • Journal of Engineering Education Research
    • /
    • v.26 no.4
    • /
    • pp.22-35
    • /
    • 2023
  • As information and communication technology has developed remarkably, it has become possible to analyze various types of large-volume data generated at a speed close to real time, and based on this, reliable value creation has become possible. Such big data analysis is becoming an important means of supporting decision-making based on scientific figures. The purpose of this study is to develop a big data analysis tool that can analyze large amounts of data generated through engineering education. The tasks of this study are as follows. First, a database is designed to store the information of entries in the National Creative Capstone Design Contest. Second, the pre-processing process is checked for analysis with big data analysis tools. Finally, analyze the data using the developed big data analysis tool. In this study, 1,784 works submitted to the National Creative Comprehensive Design Contest from 2014 to 2019 were analyzed. As a result of selecting the top 10 words through topic analysis, 'robot' ranked first from 2014 to 2019, and energy, drones, ultrasound, solar energy, and IoT appeared with high frequency. This result seems to reflect the current core topics and technology trends of the 4th Industrial Revolution. In addition, it seems that due to the nature of the Capstone Design Contest, students majoring in electrical/electronic, computer/information and communication engineering, mechanical engineering, and chemical/new materials engineering who can submit complete products for problem solving were selected. The significance of this study is that the results of this study can be used in the field of engineering education as basic data for the development of educational contents and teaching methods that reflect industry and technology trends. Furthermore, it is expected that the results of big data analysis related to engineering education can be used as a means of preparing preemptive countermeasures in establishing education policies that reflect social changes.

A Bayesian uncertainty analysis for nonignorable nonresponse in two-way contingency table

  • Woo, Namkyo;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1547-1555
    • /
    • 2015
  • We study the problem of nonignorable nonresponse in a two-way contingency table and there may be one or two missing categories. We describe a nonignorable nonresponse model for the analysis of two-way categorical table. One approach to analyze these data is to construct several tables (one complete and the others incomplete). There are nonidentifiable parameters in incomplete tables. We describe a hierarchical Bayesian model to analyze two-way categorical data. We use a nonignorable nonresponse model with Bayesian uncertainty analysis by placing priors in nonidentifiable parameters instead of a sensitivity analysis for nonidentifiable parameters. To reduce the effects of nonidentifiable parameters, we project the parameters to a lower dimensional space and we allow the reduced set of parameters to share a common distribution. We use the griddy Gibbs sampler to fit our models and compute DIC and BPP for model diagnostics. We illustrate our method using data from NHANES III data to obtain the finite population proportions.

The Condition Analysis about Job Satisfaction and Separation Propensity of Foodservice Industry Culinary Employee′s (외식산업 조리종사자의 직무만족과 이직성향에 대한 실태분석)

  • 이선호;김선희;김민수
    • Culinary science and hospitality research
    • /
    • v.9 no.4
    • /
    • pp.37-53
    • /
    • 2003
  • The purpose of this study was to find out efficient control plan for productivity increase. To analyze the data, the measure of question a paper was used to 5 a point measure, statistics disposition was used to SPSS, the analyze method was used to frequency analyze, trust degree analyze, difference analyze useful average value, person's correlation analyze, revolution analyze. The results of this study could be explained as follow: First, find out high change separation propensity. Secondly, was subjected important for atmosphere composition and was required strategy consideration for stable job recognition. Third, was operated affirmative to recognition about separation and was increased to job satisfaction according as a colleague relation and team work. Fourth, was increased to comparative separation propensity in case that high job satisfaction. Therefore it is required interesting labor item and treatment development about personal evaluation.

  • PDF

The Analysis Framework for User Behavior Model using Massive Transaction Log Data (대규모 로그를 사용한 유저 행동모델 분석 방법론)

  • Lee, Jongseo;Kim, Songkuk
    • The Journal of Bigdata
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • User activity log includes lots of hidden information, however it is not structured and too massive to process data, so there are lots of parts uncovered yet. Especially, it includes time series data. We can reveal lots of parts using it. But we cannot use log data directly to analyze users' behaviors. In order to analyze user activity model, it needs transformation process through extra framework. Due to these things, we need to figure out user activity model analysis framework first and access to data. In this paper, we suggest a novel framework model in order to analyze user activity model effectively. This model includes MapReduce process for analyzing massive data quickly in the distributed environment and data architecture design for analyzing user activity model. Also we explained data model in detail based on real online service log design. Through this process, we describe which analysis model is fit for specific data model. It raises understanding of processing massive log and designing analysis model.

  • PDF

A Case Study on Big Data Analysis Systems for Policy Proposals of Engineering Education (공학교육 정책제안을 위한 빅데이터 분석 시스템 사례 분석 연구)

  • Kim, JaeHee;Yoo, Mina
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.37-48
    • /
    • 2019
  • The government has tried to develop a platform for systematically collecting and managing engineering education data for policy proposals. However, there have been few cases of big data analysis platform for policy proposals in engineering education, and it is difficult to determine the major function of the platform, the purpose of using big data, and the method of data collection. This study aims to collect the cases of big data analysis systems for the development of a big data system for educational policy proposals, and to conduct a study to analyze cases using the analysis frame of key elements to consider in developing a big data analysis platform. In order to analyze the case of big data system for engineering education policy proposals, 24 systems collecting and managing big data were selected. The analysis framework was developed based on literature reviews and the results of the case analysis were presented. The results of this study are expected to provide from macro-level such as what functions the platform should perform in developing a big data system and how to collect data, what analysis techniques should be adopted, and how to visualize the data analysis results.

Trend of Research and Industry-Related Analysis in Data Quality Using Time Series Network Analysis (시계열 네트워크분석을 통한 데이터품질 연구경향 및 산업연관 분석)

  • Jang, Kyoung-Ae;Lee, Kwang-Suk;Kim, Woo-Je
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • The purpose of this paper is both to analyze research trends and to predict industrial flows using the meta-data from the previous studies on data quality. There have been many attempts to analyze the research trends in various fields till lately. However, analysis of previous studies on data quality has produced poor results because of its vast scope and data. Therefore, in this paper, we used a text mining, social network analysis for time series network analysis to analyze the vast scope and data of data quality collected from a Web of Science index database of papers published in the international data quality-field journals for 10 years. The analysis results are as follows: Decreases in Mathematical & Computational Biology, Chemistry, Health Care Sciences & Services, Biochemistry & Molecular Biology, Biochemistry & Molecular Biology, and Medical Information Science. Increases, on the contrary, in Environmental Sciences, Water Resources, Geology, and Instruments & Instrumentation. In addition, the social network analysis results show that the subjects which have the high centrality are analysis, algorithm, and network, and also, image, model, sensor, and optimization are increasing subjects in the data quality field. Furthermore, the industrial connection analysis result on data quality shows that there is high correlation between technique, industry, health, infrastructure, and customer service. And it predicted that the Environmental Sciences, Biotechnology, and Health Industry will be continuously developed. This paper will be useful for people, not only who are in the data quality industry field, but also the researchers who analyze research patterns and find out the industry connection on data quality.

Big Data Analytics Case Study from the Marketing Perspective : Emphasis on Banking Industry (마케팅 관점으로 본 빅 데이터 분석 사례연구 : 은행업을 중심으로)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.207-218
    • /
    • 2018
  • Recently, it becomes a big trend in the banking industry to apply a big data analytics technique to extract essential knowledge from their customer database. Such a trend is based on the capability to analyze the big data with powerful analytics software and recognize the value of big data analysis results. However, there exits still a need for more systematic theory and mechanism about how to adopt a big data analytics approach in the banking industry. Especially, there is no study proposing a practical case study in which big data analytics is successfully accomplished from the marketing perspective. Therefore, this study aims to analyze a target marketing case in the banking industry from the view of big data analytics. Target database is a big data in which about 3.5 million customers and their transaction records have been stored for 3 years. Practical implications are derived from the marketing perspective. We address detailed processes and related field test results. It proved critical for the big data analysts to consider a sense of Veracity and Value, in addition to traditional Big Data's 3V (Volume, Velocity, and Variety), so that more significant business meanings may be extracted from the big data results.

A Study on a Way to Utilize Big Data Analytics in the Defense Area (국방분야 빅데이터 분석의 활용가능성에 대한 고찰)

  • Kim, Seong-Woo;Kim, Gak-Gyu;Yoon, Bong-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.2
    • /
    • pp.1-19
    • /
    • 2014
  • Recently, one of the core keywords in information technology (IT) as well as areas such as business management is big data. Big data is a term that includes technology, personnel, and organization required to gather/manage/analyze collection of data sets so large and complex that it becomes difficult to manage and analyze using traditional tools. The military has been accumulating data for a long period due to the organization's characteristic in placing emphasis on reporting and records. Considering such characteristic of the military, this study verifies the possibility of improving the performance of the military organization through use of big data and furthermore, create scientific development of operation, strategy, and support environment. For this purpose, the study organizes general status and case studies related to big data, traces back examples of data utilization by Korean's national defense sector through US military data collection and case studies, and proposes the possibility of using and applying big data in the national defense sector.

Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches (보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 -)

  • Kim, Hyunju;Park, So-Hyun;Lee, Sunjae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.