• Title/Summary/Keyword: Analytical loss model

Search Result 177, Processing Time 0.026 seconds

Analytical model of transverse pressure loss in a rod array

  • Ricciardi, Guillaume;Peybernes, Jean;Faucher, Vincent
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2714-2719
    • /
    • 2022
  • The present paper proposes some new computational methods and results in the framework of flow computation through congested domains seen as porous media, as it can be found in the core of a Pressurized Water Reactor (PWR). The flow is thus mostly governed by the distribution of pressure losses, both through the porous structures, such as fuel assemblies, and in the thin fluid layers between them. The purpose of the present paper is to consider the question of the interaction of a flow and a rod bundle from an analytical point of view gathering all the contributions through a set of equations as simple and representative as possible. It aims at demonstrating a sound understanding of the relevant phenomena governing the flow establishment in the geometry of interest instead of relying mainly on a posteriori observations obtained both experimentally and numerically. Comparison with two set of experimental results showed good agreement. The model proposed being analytical it appears easily implementable for studies needing an expression of fluid forces in a rod array as for fuel assembly bowing issue. It would be interesting to test the reliability of the model on other geometry with different P/R ratios.

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams

  • Sung, Deokyong;Hong, Seongwon
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.671-683
    • /
    • 2022
  • To investigate and predict the long-term time-dependent behavior, such as creep, shrinkage, and relaxation of PS strands, and prestress loss in prestressed steel-concrete composite beams, named Precom, full-scale tests were conducted and the collected data were compared with those obtained from the two proposed analytical models. The combined effective modulus method (EMM)-empirical model proposed with a flowchart considered the creep effect to determine the prestress loss. Conversely, the age-adjusted effective modulus method (AEMM) with CEB-FIP equation was developed to account for the concrete aging. The results indicated that the AEMM with CEB-FIP model predicts the long-term behavior of Precom effectively.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF

An Analysis on Structureborne Noise Tranmission Loss of Ship Structure (선체구조의 고체음 전달해석)

  • 강현주;김재승;김현실
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.31-39
    • /
    • 1991
  • When predicting shipboard noise levels, the accuracy depends largely on the value of the structureborne noise transmission loss. Although empirical formulars are frequently used because of their simplicities, researches on the analytical methods to estimate the transmission loss of structureborne noise such as wave guide theory and SEA has long been one of the major topics in shipboard acoustics to overcome the inherent limitations of empirical ones. This paper describes an application of SEA to predict the transmission loss of the structurebornenoise of a simple ship-like structural model consisted of 22 flat plates. The result shows that discrepancies between experimental and theoretical transmission losses are less than 3 dB.

  • PDF

Sound Transmission Loss of Double Panels : II. Double Panels with Porous Materials (이중판의 차음손실 : II. 다공질재 이중판)

  • 강현주;이정권;김현실;김재승;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.634-642
    • /
    • 1998
  • This paper deals with the analytical model of an elastic porous material in sound transmission loss of a double panel with fiber glasses. From the parametric analysis, it is concluded that the boundary condition, which is concerned to the contact between the skin panel and core materials, does not have much influence on sound transmission loss of a double panel with fiber glasses, and material properties of the porous material become, however, important factors to mass-spring-mass resonance. The comparisons of the prediction with the measurement of sound transmission loss of walls show good agreement between the two values.

  • PDF

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Analytical model for mean web object transfer latency estimation in the narrowband IoT environment (협대역 사물 인터넷 환경에서 웹 객체의 평균 전송시간을 추정하기 위한 해석적 모델)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • This paper aims to present the mathematical model to find the mean web object transfer latency in the slow-start phase of TCP congestion control mechanism, which is one of the main control techniques of Internet. Mean latency is an important service quality measure of end-user in the network. The application area of the proposed latency model is the narrowband environment including multi-hop wireless network and Internet of Things(IoT), where packet loss occurs in the slow-start phase only due to small window. The model finds the latency considering initial window size and the packet loss rate. Our model shows that for a given packet loss rate, round trip time and initial window size mainly affect the mean web object transfer latency. The proposed model can be applied to estimate the mean response time that end user requires in the IoT service applications.

Analysis on Wave Absorbing Performance of a Pile Breakwater (파일 방파제의 소파성능 해석)

  • Cho, Il-Hyoung;Koh, Hyeok-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Based on the eigenfunction expansion method, the wave-absorbing performance of a square or circular pile breakwater was investigated. Flow separation resulting from sudden contraction and expansion is generated and is the main cause of significant energy loss. Therefore, evaluation of an exact energy loss coefficient is critical to enhancing the reliability of the mathematical model. To obtain the energy loss coefficient, 2-dimensional turbulent flow is analyzed using the FLUENT commercial code, and the energy loss coefficient can be obtained from the pressure difference between upstream and downstream. It was found that energy loss coefficient of circular pile is 20% that of a square pile. To validate the fitting equation for the energy loss coefficient, comparison between the analytical results and the experimental results (Kakuno and Liu, 1993) was made for square and circular piles with good agreement. The array of square piles also provides better wave-absorbing efficiency than the circular piles, and the optimal porosity value is near P=0.1.