• Title/Summary/Keyword: Analytical and numerical method

Search Result 1,335, Processing Time 0.032 seconds

Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 개선된 변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis (준해석 설계민감도를 위한 변위하중법)

  • Yoo Jung Hun;Kim Heung Seok;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 보정변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

Comparison of a Groundwater Simulation-Optimization Numerical Model with the Analytical Solutions (해안지하수개발 최적화수치모델과 해석해의 비교연구)

  • Shi, Lei;Cui, Lei;Lee, Chan-Jong;Park, Nam-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.905-908
    • /
    • 2009
  • In the management of groundwater in coastal areas, saltwater intrusion associated with extensive groundwater pumping, is an important problem. The groundwater optimization model is an advanced method to study the aquifer and decide the optimal pumping rates or optimal well locations. Cheng and Park gave the analytical solutions to the optimization problems basing on Strack's analytical solution. However, the analytical solutions have some limitations of the property of aquifer, boundary conditions, and so on. A simulation-optimization numerical method presented in this study can deal with non-homogenous aquifers and various complex boundary conditions. This simulation-optimization model includes the sharp interface solution which solves the same governing equation with Strack's analytical solution, therefore, the freshwater head and saltwater thickness should be in the same conditions, that can lead to the comparable results in optimal pumping rates and optimal well locations for both of the solutions. It is noticed that the analytical solutions can only be applied on the infinite domain aquifer, while it is impossible to get a numerical model with infinite domain. To compare the numerical model with the analytical solutions, calculation of the equivalent boundary flux was planted into the numerical model so that the numerical model can have the same conditions in steady state with analytical solutions.

  • PDF

A photo-thermal interaction in semi-conductor medium with cylindrical cavity by analytical and numerical methods

  • Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2021
  • In this work, we compare the analytical solutions with the numerical solutions for photothermal interactions in semiconductor medium containing cylindrical cavity. This paper is devoted to a study of the photothermal interactions in semiconductor medium in the context of the coupled photo-thermal model. The basic equations are formulated in the domain of Laplace transform and the eigenvalue scheme are used to get the analytical solutions. The numerical solution is obtained by using the implicit finite difference method (IFDM). A comparison between the analytical solution and the numerical solutions are obtained. It is found that the implicit finite difference method (IFDM) is applicable, simple and efficient for such problems.

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method

  • Ullah, Salamat;Zhang, Jinghui;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.491-502
    • /
    • 2019
  • This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.

Analytical and numerical simulation on charging behavior of no-insulation REBCO pancake coil

  • Quach, Huu Luong;Kim, Ji Hyung;Chae, Yoon Seok;Moon, Jae Hyung;Ko, Jung Hyup;Kim, Hyung-Wook;Kim, Seog-Whan;Jo, Young-Sik;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.16-19
    • /
    • 2018
  • This paper presents analytical and numerical simulation approaches on charging characteristics of no-insulation (NI) REBCO pancake coil by using the equivalent circuit model to estimate magnetic performance response in the coil. The analytical methods provide closed form or definite solution in the form of complete mathematical expressions but they are hard to solve the complex problems. Numerical methods have become popular with the development of the computing capabilities to solve the problems which are impossible or very hard to solve analytically. First of all, the equivalent circuit model are proposed to develop the simulation code for both analytical and numerical method. The charging test was performed under critical current to obtain magnetic field induced and terminal voltage through the radial as well as spiral current paths within the coil. To verify the validity of both proposed methods, the simulation results were compared and discussed with the experimental results.

An Analytical Solution of One Dimensional Mild Slope Equation by the WKB method (WKB 방법에 의한 일차원 완경사 파랑식의 해석해)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.461-471
    • /
    • 2008
  • An analytical solution of one dimensional mild slope equation is derived by use of the WKB method, which has a form similar to Porter's solution(2003). The present solution is so general in the sense of application that it is comparable to the corresponding numerical solutions. In the derivation we also presented the solution of refraction equation in terms of surface displacement. Some numerical results of the present solution by use of Bremmer's method are presented which agree with existing numerical solutions.

Development of new integrated particle tracking techniques combining the numerical method, semi-analytical method, and analytical method (수치, 해석적, 준 해석적 및 해석적 방법을 통합한 새로운 입자추적기술 개발)

  • Suk, Hee-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.50-61
    • /
    • 2008
  • In this study, new integrated particle tracking algorithm was developed to reduce the inherent problem of Eulerian- Lagrangian method, or adverse effect of particle tracking error on mass balance error. The new integrated particle tracking algorithm includes numerical method, semi-analytical method, and analytical method which consider both temporal and spatial changes of velocity field during time step. Detail of mathematical derivations is well illustrated and four examples are made to verify through the comparison of the new integrated particle tracking with analytical solution or Runge-Kutta method. Additionally, It was shown that the there is better superiority of the new integrated particle tracking algorithm over other existing particle tracking method such as Lu's method.