• Title/Summary/Keyword: Analytical Electron Microscope

Search Result 52, Processing Time 0.028 seconds

Prerequisites on the Pre-installation and Installation of Analytical Electron Microscope (전자현미경 관련장비 선택요령 및 설치조건)

  • Kim, Dae-Joong
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 1995
  • An analytical electron microscope system has been widely used in biology, medicine, veterinary medicine, agriculture, and materials, etc. nowadays in Korea Market since mid of 1980's. How to install and to choose the equipments? The answers are which prerequisites are needed to us. The purpose is going to introduce the prerequisites of the pre-installation and installation of Philips analytical electron microscope(CM 12/STEM and SEM 515, Philips, The Netherlands) in the National Institute of Safety Research, Seoul and to discuss the check-subjects. The check-subjects in the pre-installation and installation are more than 24. The influence of magnetic fields, mechanical vibrations, earth is crucial factor for decision of installation site. The areas of our electron microscope center are $105.6m^2$ and have the Automatic Image Analyzer System(IBAS, Kontron Co., Germany) connecting to the SEM mode. Water temperature was controlled by the NESLAB recirculatory chillers(NESLAB Co., U.S.A.).

  • PDF

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Design and Control of Mini-Scanning Electron Microscope (미니형 주사전자 현미경의 설계 및 제어)

  • Park, Man-Jin;Kim, Dong-Hwan;Kim, Young-Dae;Jang, Dong-Young;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1271-1276
    • /
    • 2007
  • The most powerful analytical equipment usually comes at the cost of having the highest demand for space. Where electron microscopes has traditionally required a room to themselves, not just for reasons of their size but because of ancillary demands for pipes and service. The simple optical microscopes, of course, can occupy the desk-top, but because their performance is limited by the wavelength of light, their powers of magnification and resolution are inferior to that of the electron microscope. Mini SEM will sit comfortably on a desk-top but offers magnification and resolution performances much closer to that of a standard SEM. This new technique extends the scope of SEM as a high-resolution microscope, relatively cheap and widely available imaging tool, for a wider variety of samples.

  • PDF

Analysis of Ceramics Using Scanning Electron Microscopy (주사전자현미경을 활용한 세라믹의 분석)

  • Lee, Sujeong
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • A ceramic is used as a key material in various fields. Accordingly, the use of scanning electron microscopy is increased for the purpose of evaluating the reliability and defects of advanced ceramic materials. The scanning electron microscope is developed to overcome the limitations of optical microscopy and uses accelerated electrons for imaging. Various signals such as SE, BSE and characteristic X-rays provide useful information about the surface microstructure of specimens and, the content and distribution of chemical components. The development of electron guns, such as FEG, and the improved lens system combined with the advanced in-lens detectors and STEM-in-SEM system have expanded the applications of SEM. Automated SEM-EDS analysis also greatly increases the amount of data, enabling more statistically reliable results. In addition, X-ray CT, XRF, and WDS, which are installed in scanning electron microscope, have transformed SEM a more versatile analytical equipment. The performance and specifications of the scanning electron microscope to evaluate ceramics were reviewed and the selection criteria for SEM analysis were described.

An Optimized Methodology to Observe Internal Microstructures of Aloe vera by Cryo-Scanning Electron Microscope

  • Choi, Yoon Mi;Shin, Da Hye;Kim, Chong-Hyeak
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.76-82
    • /
    • 2016
  • Aloe vera has been used in the pharmaceutical, food and cosmetic industry for its therapeutic properties. However, there are not many current studies on the microstructure of A. vera compared to studies on the chemical constituents and health efficacy of A. vera. Therefore, we compared the morphology of an A. vera leaf using an optical microscope, a conventional scanning electron microscope (SEM) and a cryo-SEM. Especially, this study focused on observing the gel in the inner leaf of A. vera, which is challenging using standard imaging techniques. We found that cryo-SEM is most suitable method for the observation of highly hydrated biomaterials such as A. vera without removing moisture in samples. In addition, we found the optimal analytical conditions of cryo-SEM. The sublimation conditions of $-100^{\circ}C$ and 10 minutes possibly enable the surface of the inner leaf of A. vera to be observed in their "near life-like" state with retaining moisture. The experiment was repeated with A. arborescens and A. saponaria to confirm the feasibility of the conditions. The results of this study can be applied towards the basic research of aloe and further extend previous knowledge about the surface structures of the various succulent plants.

The Effect of Mn Content Solution-treatment Temperatures on Insoluble Phases in Al-Li-Cu-Mg-Mn-Zr Alloys (Al-Li-Cu-Mg-Zr 합금의 미고용상에 미치는 용체화 처리 및 Mn 함량의 영향)

  • Shin, Hyun-Sik;Ming, He;Cho, Kwon-Koo;Chung, Young-Hoon;Shin, Myung-Chul
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.517-526
    • /
    • 1994
  • Large insoluble phases and dispersoids in Al-Li-Cu-Mg-Mn-Zr alloys containing Mn were analyzed with EPMA(Electron Probe Microanalyzer) and SAEM(Scanning Auger Electron Microscope). Morphology, distribution and volume fraction of the large insoluble phase were also analyzed quantitatively by optical microscopy. Mechanical properties were tested at room temperature and at $200^{\circ}C$. With increasing Mn contents, the volume fraction of the large insoluble phases increased steeply, thus decreasing ductility. Mn was found to be very effective for obtaing uniformly distributed fine-grain structures. The alloy containing 0.44 wt% Mn showed the highest tensile strength among Mn-bearing alloys tested.

  • PDF

Current Status of Liquid-cell Transmission Electron Microscopy (액상 투과전자현미경 분석기법 소개 및 최신 연구동향)

  • Hong, Jaeyoung;Chun, Dong Won
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.417-428
    • /
    • 2019
  • Even though, nanoscale materials of various shapes and compositions have been synthesized in the liquid, their underlying growth and transformation mechanisms are not well understood due to a lack of analytical methods. The advent of liquid cell for transmission electron microscope (TEM) enables the direct imaging of chemical reactions that occur in liquids with nanometer resolution of the electron microscope (EM). Here, the technical development of liquid cell TEM equipment and their applications to the study of nanomaterials analysis in liquid are discussed. Also new findings discovered through liquid cell TEM studies such as nucleation & growth, coalescence process and transformation are discussed.

Effects of Electroplating Condition on Micro Bump of Multi-Layer Build-Up PCB (다층 PCB 빌드업 기판용 마이크로 범프 도금에 미치는 전해조건의 영향)

  • Seo, Min-Hye;Hong, Hyun-Seon;Jung, Woon-Suk
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Micro-sized bumps on a multi-layered build-up PCB were fabricated by pulse-reverse copper electroplating. The values of the current density and brightener content for the electroplating were optimized for suitable performance with maximum efficiency. The micro-bumps thus electroplated were characterized using a range of analytical tools that included an optical microscope, a scanning electron microscope, an atomic force microscope and a hydraulic bulge tester. The optical microscope and scanning electron microscope analyses results showed that the uniformity of the electroplating was viable in the current density range of $2-4\;A/dm^2$; however, the uniformity was slightly degraded as the current density increased. To study the effect of the brightener concentration, the concentration was varied from zero to 1.2 ml/L. The optimum concentration for micro-bump electroplating was found to be 0.6 ml/L based on an examination of the electroplating properties, including the roughness, yield strength and grain size.

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials (전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구)

  • Kwon, Ohkyung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

A Study on Analytical Method for Energetically-Modified Reject Fly Ash Using Transmission Electron Microscope (투과전자현미경을 이용한 활성 잔사회 분석에 관한 연구)

  • Jeong, Jae-Hyun;Chu, Yong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.201-202
    • /
    • 2016
  • Energetically-modified material using reject fly ash was manufactured to investigate the effect of the material on strength characteristic of cement mortar. In order to modify reject fly ash, a vibration mill was used. after grinding process, the defects in the alignment of atom was checked using transmission electron microscope. It was found that the compressive strength values of 28 days-cured specimens using energetically-modified reject fly ash (ERFA) were higher than that of mortar with non-ground reject fly ash.

  • PDF