• Title/Summary/Keyword: Analytical

Search Result 17,681, Processing Time 0.04 seconds

Simple and Accurate Analytical Model for Predicting Cyclic Behavior of Rectangular Steel HSS Braces (간략하고 정확한 장방형 각형강관 가새부재 이력거동 예측 위한 해석모델)

  • Han, Sang Whan;Sung, Min Soo;Mah, Dongjun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.145-152
    • /
    • 2017
  • The objective of this study is to propose a simple and accurate analytical model for HSS braces. For this purpose, a physical theory model is adopted. Rectangular hollow section steel (HSS) braces are considered in this study. To accurately simulate the cyclic behavior of braces using the physical theory model, empirical equations calculating constituent parameters are implemented on the analytical model, which were proposed in the companion paper. The constituent parameters are cyclic brace growth, cyclic buckling load, and the incidence of local buckling and fracture. The analytical model proposed in this study was verified by comparing actual and simulated cyclic curves of brace specimens. It is observed that the proposed model accurately simulates the cyclic behavior of the braces throughout whole response range.

Development of Analytical Model to Predict The Inelastic Behavior of Reinforced Concrete And Masonry Structures (RC 및 조적조구조물의 비탄성 거동예측을 위한 해석적 모델개발)

  • 홍원기;이호범;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.160-167
    • /
    • 1993
  • In earthquake structural engineering towards a better understanding of both the earthquake ground motion and structural response, the design of concrete structures to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary objective earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design menthodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a dectile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The paper is to demonstrate experimentally verified analytical method that provide the adequate degree of safety and confidience in the behavior of R.C. structural components and further attempts to extend the developed modeling technique for use by practicing structural engineers.

  • PDF

Analysis on electromagnetic characteristics of linear induction motor using the analytical method (해석적인 방법에 의한 직선형 유도 전동기의 전자기적 특성해석)

  • Jang, Seok-Myeong;Choi, Ji-Hwan;Ko, Kyoung-Jin;Kim, Hyun-Kyu;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.804_805
    • /
    • 2009
  • This paper deals with analysis on electromagnetic characteristics of linear induction motor(LIM) using the analytical method. As a analytical method, space harmonics method which is applied to multilayer region is used in this paper. Using the flux density obtained by analytical method, thrust and normal force are calculated through Maxell stress tensor. The results such as flux densitty, eddy current and force are verified by comparison between analytical results and FEM.

  • PDF

Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors

  • Samuel, T.S.Arun;Balamurugan, N.B.;Sibitha, S.;Saranya, R.;Vanisri, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1481-1486
    • /
    • 2013
  • In this paper, a new two dimensional (2D) analytical model of a Dual Material Gate tunnel field effect transistor (DMG TFET) is presented. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expressions for surface potential and electric field are derived. The electric field distribution can be used to calculate the tunneling generation rate and numerically extract tunneling current. The results show a significant improvement of on-current and reduction in short channel effects. Effectiveness of the proposed method has been confirmed by comparing the analytical results with the TCAD simulation results.

Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

  • Roh, Kyoung-Min;Park, Eun-Seo;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

Analytical and numerical analysis for unbonded flexible risers under axisymmetric loads

  • Guo, Yousong;Chen, Xiqia;Wang, Deyu
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.129-141
    • /
    • 2016
  • Due to the structural complexity, the response of a flexible riser under axisymmetric loads is quite difficult to determine. Based on equilibrium conditions, geometrical relations and constitutive equations, an analytical model that can accurately predict the axisymmetric behavior of flexible risers is deduced in this paper. Since the mutual exclusion between the contact pressure and interlayer gap is considered in this model, the influence of the load direction on the structural behavior can be analyzed. Meanwhile, a detailed finite element analysis for unbonded flexible risers is conducted. Based on the analytical and numerical models, the structural response of a typical flexible riser under tension, torsion, internal and outer pressure has been studied in detail. The results are compared with experimental data obtained from the literature, and good agreement is found. Studies have shown that the proposed analytical and numerical models can provide an insightful reference for analysis and design of flexible risers.

Application of fiber element in the assessment of the cyclic loading behavior of RC columns

  • Sadjadi, R.;Kianoush, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.301-317
    • /
    • 2010
  • This paper studies the reliability of an analytical tool for predicting the lateral load-deformation response of RC columns while subjected to lateral cyclic displacements and axial load. The analytical tool in this study is based on a fiber element model implemented into the program DRAIN-2DX (fiber element). The response of RC column under cyclic displacement is defined by the behavior of concrete, and reinforcing steel under general reversed-cyclic loading. A tri-linear stress-strain relationship for the cyclic behavior of steel is proposed and the improvement in the analytical results is studied. This study only considers the behavior of columns with flexural dominant mode of failure. It is concluded that with the implementation of appropriate constitutive material models, the described analytical tools can predict the response of the columns with reasonable accuracy when compared to experimental data.

An Analytical Model of Corona Discharge Plasmas in Coaxial Cylindrical Reactor (동축 원통형 코로나 방전 플라즈마의 해석적 모델)

  • 고욱희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.157-161
    • /
    • 2004
  • We present a simple analytical expression of plasma density by making use of the electron density equation to study the dynamic behavior of the corona discharge plasma. It assumes that a specified voltage profile is fed through the inner conductor of the reactor chamber consisting of two coaxial conducting cylinders. The analytical description is based on the electron continuity equation with ionization and attachment by electrons. It is found that the electron density profile calculated between two coaxial cylindrical electrodes depends very sensitively on the Profile of applied voltage. The analytical expression of plasma density and its generation will provide important scaling laws in the corona discharge plasma.

Analytical Solution for Flow Field by Arbitrarily-Located Multi Injection-Pumping Wells

  • Yoo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.79-82
    • /
    • 2001
  • Analytical solutions have been derived to delineate the capture zone created by pumping wells for the remediation design of contaminated groundwater. These previous analytical solutions are often restricted to pumping wells only, specific well locations, a limited number of wells, and an isotropic aquifer. Analytical solution was developed to deal with arbitrarily located multi injection-pumping wells in an anisotropic homogeneous aquifer. The solution presented in this study provides a simple, easy method for determining tile complex flow field caused by multi injection-pumping wells at different rates, and will consequently be useful in pump-and-treat design.

  • PDF

Development of Prediction Model for Sidewall Curl in Sheet Metal Forming(I)-Analytical Model (박판성형시 컬 예측모델 개발(I)-해석적 모델)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.432-437
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control sidewall curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. The analytical model includes the variables of applied tensile force, the yield strength, the elastic modulus, the bending radius, and the sheet thickness, which are the primary factors affecting sidewall curl during sheet stamping operations. For the accuracy of analytical model, six possible deformation patterns are proposed on the basis of material properties and bending geometries.