• Title/Summary/Keyword: Analysis of electronic circuits

Search Result 152, Processing Time 0.022 seconds

Giga-Hertz-Level Electromagnetic Field Analysis for Equivalent Inductance Modeling of High-Performance SoC and SiP Designs

  • Yao Jason J.;Chang Keh-Jeng;Chuang Wei-Che;Wang, Jimmy S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • With the advent of sub-90nm technologies, the system-on-chip (SoC) and system-in-package (SiP) are becoming the trend in delivering low-cost, low-power, and small-form-factor consumer electronic systems running at multiple GHz. The shortened transistor channel length reduces the transistor switching cycles to the range of several picoseconds, yet the time-of-flights of the critical on-chip and off-chip interconnects are in the range of 10 picoseconds for 1.5mm-long wires and 100 picoseconds for 15mm-long wires. Designers realize the bottleneck today often lies at chip-to-chip interconnects and the industry needs a good model to compute the inductance in these parts of circuits. In this paper we propose a new method for extracting accurate equivalent inductance circuit models for SPICE-level circuit simulations of system-on-chip (SoC) and system-in-package (SiP) designs. In our method, geometrical meshes are created and numerical methods are used to find the solutions for the electromagnetic fields over the fine meshes. In this way, multiple-GHz SoC and SiP designers can use accurate inductance modeling and interconnect optimization to achieve high yields.

Parallel Operation of Microgrid Inverters Based on Adaptive Sliding-Mode and Wireless Load-Sharing Controls

  • Zhang, Qinjin;Liu, Yancheng;Wang, Chuan;Wang, Ning
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.741-752
    • /
    • 2015
  • This study proposes a new solution for the parallel operation of microgrid inverters in terms of circuit topology and control structure. A combined three-phase four-wire inverter composed of three single-phase full-bridge circuits is adopted. Moreover, the control structure is based on adaptive three-order sliding-mode control and wireless load-sharing control. The significant contributions are as follows. 1) Adaptive sliding-mode control performance in inner voltage loop can effectively reject both voltage and load disturbances. 2) Virtual resistive-output-impedance loop is applied in intermediate loop to achieve excellent power-sharing accuracy, and load power can be shared proportionally to the power rating of the inverter when loads are unbalanced or nonlinear. 3) Transient droop terms are added to the conventional power outer loop to improve dynamic response and disturbance rejection performance. Finally, theoretical analysis and test results are presented to validate the effectiveness of the proposed control scheme.

Variable Dual Band Stop Filter Using 3-Stepped Impedance Resonators (3단 계단형 임피던스 공진기를 이용한 가변 이중 대역 저지 필터)

  • Kim, Gi-Rae;Kim, Yo-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • A novel circuit structure of dual-band bandstop filters is proposed in this paper. This structure comprises two shunt-connected tri-section stepped impedance resonators with a transmission line in between. Theoretical analysis from the equivalent circuit and design procedures are described. We represented graphs for filter design from the derived synthesis equations by resonance condition of circuits. Notably, advantages of the proposed filter structure are compact size in design, wide range of realizable resonance frequency ratio, and more realizable impedances.

Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes (커프 신경전극을 위한 저잡음 증폭기 시스템 개발)

  • Song, Kang-Il;Chu, Jun-Uk;Suh, Jun-Kyo Francis;Choi, Kui-Won;Yoo, Sun-K.;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.

Design and Fabrication of a Surge Generator with Coupling/Decoupling Networks (커플링/디커플링 네트워크 내장 서지발생장치의 설계 및 제작)

  • Kim, Nam-Hoon;Kang, Tae-Ho;Shin, Han-Sin;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.130-134
    • /
    • 2020
  • Metal oxide varistors (MOVs) protect circuits and devices from transient overvoltages in electric power systems. However, a MOV continuously deteriorates owing to manufacturing defects or repetitive protective operations from transient overvoltages. A deteriorated MOV may result in a short circuit or a line-ground accident. Previous studies focused on the analysis of deterioration mechanisms and condition diagnosis techniques for MOVs owing to their recent growth of use. An accelerated deterioration experiment under the same conditions in which a MOV operates is essential. In this study, we designed and fabricated a surge generator that can apply a surge current to a MOV connected to AC mains. The coupling network operates at a low impedance against the surge current from the surge generator and transfers the surge current to the MOV under test. It also acts as a high impedance against AC mains for the AC voltage not to be applied to the surge generator. The decoupling network operates at a high impedance against the surge current and blocks the surge current from AC mains. It also acts as a low impedance against AC mains for the AC voltage to be applied to the MOV under test. The prototype surge generator can apply the 8/20 us up to 15 kA on AC voltages in the approximate range of 110~450 V, and it fully operates on a LabVIEW-based program.

Snoring Detection using Polyvinylidene Fluoride Vibration Sensors (Polyvinylidene Fluoride 진동센서를 이용한 코골이 검출)

  • Jee, Duk-Keun;Wei, Ran;Kim, Hee-Sun;Im, Jae-Joong
    • Science of Emotion and Sensibility
    • /
    • v.14 no.3
    • /
    • pp.459-466
    • /
    • 2011
  • Sleep diseases such as snoring and sleep apnea are physically, mentally harmful and results serious health problems. Snoring, known as breathing noise, is caused by coupled oscillation of the airway when the air passes through the trachea, and sleep apnea is caused by upper airway blockage. In order to solve these problems, many attempts have been made to detect the snoring during sleep and alleviate it. In this study, a new sensing system and analysis algorithm were developed in order to detect snoring sounds correctly under various sleep environments. Two polyvinylidene fluoride (PVDF) vibration sensors were used inside the pillow. The first PVDF sensor detects vibration transmitted through skull caused by snoring. And the second PVDF sensor detects both snoring sounds and ambient noises. The signals of two sensors were acquired through the designed analog circuits, and analyzed for snoring detection. Ten volunteers were participated for the experiment under five different conditions. Data from two PVDF sensors were processed by the established analysis algorithm, and snoring sounds were compared to noises. The results indicated that the energy of snoring is 70% bigger than that of ambient noise, which proves effectiveness of sensing system and analysis algorithm. Further study would be continued for more wide clinical studies with various environment noises. Based on this study, development of anti-snore pillow and sleep monitoring system for comfort sleep could be developed.

  • PDF

Development and Verification of Lightning Induced Transient Protection Device for Avionics Computer (항공기 탑재 컴퓨터용 간접낙뢰 보호장치 개발 및 검증)

  • Sim, Yong-gi;Ahn, Tae-sik;Park, Jun-hyun;Han, Jong-pyo;Yang, Seo-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.395-402
    • /
    • 2015
  • This paper introduces the design details and test procedures of the lightning induced transient protection device for protecting the damage caused by indirect lightning strike on the computer mounted on the aircraft. Lightning induced surge voltage is bring a malfunction or damage to the aircraft electrical and electronic equipment, that is referred to indirect effects of lightning. In order to protect the electronic equipment on aircraft from the indirect effects of lightning, that is achieved by analyzing the effect on aircraft from lightning and protect design for each devices. In this paper, we introduce an indirect lightning strike level decisions, the protection circuit design method according to the chosen level through the RTCA DO-160G Section 22 category analysis and selection was performed in order to protect the damage caused by indirect lightning strikes in the protected equipment. In addition, we show the indirect lightning effects verification test performed to validate the designed protection circuits.

Analysis and Implementation of a Half Bridge Class-DE Rectifier for Front-End ZVS Push-Pull Resonant Converters

  • Ekkaravarodome, Chainarin;Jirasereeamornkul, Kamon
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.626-635
    • /
    • 2013
  • An analysis of the junction capacitance in resonant rectifiers which has a significant impact on the operating point of resonance circuits is studied in this paper, where the junction capacitance of the rectifier diode is to decrease the resonant current and output voltage in the circuit when compared with that in an ideal rectifier diode. This can be represented by a simplified series resonant equivalent circuit and a voltage transfer function versus the normalized operating frequency at varied values of the resonant capacitor. A low voltage to high voltage push-pull DC/DC resonant converter was used as a design example. The design procedure is based on the principle of the half bridge class-DE resonant rectifier, which ensures more accurate results. The proposed scheme provides a more systematic and feasible solution than the conventional resonant push-pull DC/DC converter analysis methodology. To increase circuit efficiency, the main switches and the rectifier diodes can be operated under the zero-voltage and zero-current switching conditions, respectively. In order to achieve this objective, the parameters of the DC/DC converter need to be designed properly. The details of the analysis and design of this DC/DC converter's components are described. A prototype was constructed with a 62-88 kHz variable switching frequency, a 12 $V_{DC}$ input voltage, a 380 $V_{DC}$ output voltage, and a rated output power of 150 W. The validity of this approach was confirmed by simulation and experimental results.

The Characteristics Analysis of Novel Moat Structures in Shallow Trench Isolation for VLSI (초고집적용 새로운 회자 구조의 얕은 트랜치 격리의 특성 분석)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2509-2515
    • /
    • 2014
  • In this paper, the conventional vertical structure for VLSI circuits CMOS intend to improve the stress effects of active region and built-in threshold voltage. For these improvement, the proposed structure is shallow trench isolation of moat shape. We want to analysis the electron concentration distribution, gate bias vs energy band, thermal stress and dielectric enhanced field of thermal damage between vertical structure and proposed moat shape. Physically based models are the ambient and stress bias conditions of TCAD tool. As an analysis results, shallow trench structure were intended to be electric functions of passive as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage, are decreased the stress effects of active region. The fabricated device of based on analysis results data were the almost same characteristics of simulation results data.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF