• Title/Summary/Keyword: Analysis of Reliability

Search Result 12,216, Processing Time 0.048 seconds

Reliability Analysis of Auxiliary Power System on Korea High Speed Train (한국형 고속열차 보조전원 시스템의 신뢰성 해석)

  • 서승일;박춘수;한영재;이태형;김기환
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.356-359
    • /
    • 2004
  • In this paper, as the first step to assess and enhance the reliability of Korea High Speed Train, auxiliary power system is selected and reliability analysis is carried out. The auxiliary power system is classified into subsystems and functional analysis is conducted. Reliability block diagrams are drawn and reliability parametric analysis is performed. Analysis results show that the reliability of auxiliary power system depends on critical items. To grow the system reliability, activities should be concentrated on improvement of critical items.

Development of computational software for flutter reliability analysis of long span bridges

  • Cheng, Jin
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.209-221
    • /
    • 2012
  • The flutter reliability analysis of long span bridges requires use of a software tool that predicts the uncertainty in a flutter response due to uncertainties in the model formulation and input parameters. Existing flutter analysis numerical codes are not capable of dealing with stochastic uncertainty in the analysis of long span bridges. The goal of the present work is to develop a software tool (FREASB) to enable designers to efficiently and accurately conduct flutter reliability analysis of long span bridges. The FREASB interfaces an open-source Matlab toolbox for structural reliability analysis (FERUM) with a typical deterministic flutter analysis code. The paper presents a brief introduction to the generalized first-order reliability method implemented in FREASB and key steps involved in coupling it with a typical deterministic flutter analysis code. A numerical example concerning flutter reliability analysis of a long span suspension bridge with a main span of 1385 m is presented to demonstrate the application and effectiveness of the methodology and the software.

Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System (항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계)

  • Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

A study on Reliability Analysis for Plane Frame Structure (평면뼈대구조의 신뢰성해석에 관한연구)

  • 이중빈;신형우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.34-39
    • /
    • 1989
  • Recent trends in design standards development have encouraged the use of probabilistic limit sate design concepts. Reliability analysis adopted in those advanced countries have the potentials that they afford for symplifying the design Process arid placing it on a consistent reliability based for various construction materials. This study is proposed in the reliability analysis of plane frame structures using second-order moment method(Level-II they). Lind-Hasofer's minimum distance method is use in the derivation of an mathematical algorithm as well as an determination of Correlation cofficients, reliability index and total reliability index depending on the multiple failure modes. In addition. This study is employed as a practical tool for the approximate reliability analysis. Results of the numerincal analysis showed that the difference between the reliability index of the failure probability of the multiple failure modes and the total reliability index of the failure probability with the simultaneous failure modes deviated nearly 3∼10% depending on tile performance functions.

  • PDF

Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure (지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법)

  • Lee, Do-Geun;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

Alternative Analysis of Reliability Design using Redundancy Technique (리던던시 기법을 활용한 신뢰성 설계 대안 분석)

  • Seo, Yang Woo;Lim, Jae Hoon;Yoon, Jung Hwan;Nam, Hyun Woo;Woo, Yeon Jeong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • In this paper we proposed the alternative analysis of reliability design using redundancy technique. First, we presented the process for establishing the reliability design alternative analysis process considering the active redundancy and the standby redundancy. and then, the case analysis of A driving equipment was performed in accordance with the reliability design alternative analysis process presented. In case the series reliability design result is not met with the reliability target value. so, the target item for redundancy design of A driving equipment were selected as items with a severity of two or higher. The redundancy design applied with active and standby redundancy techniques were analyzed using BlockSim software. As a result, it was analyzed that reliability design to active redundancy with one of two elements required for A driving equipment is the most efficient compared to the target value of reliability. The results of this study can be usefully used before the reliability design is performed.

Reliability-Based Optimization using Sensitivity Analysis of Reliability Index (신뢰성 지수의 민감도 해석을 이용한 신뢰성에 기초한 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.101-108
    • /
    • 2000
  • An optimum design algorithm using efficient reanalysis is proposed for reliability-based optimization problems formulated as the minimization of initial cost and expected failure cost with reliability constraints. The reliability-based optimization is high cost to evaluate objective function and constraints needed reliability analysis. Therefore the sensitivity analysis of reliability index for approximated reanalysis is necessary. In this paper, three solution approaches are suggested and tested. The approaches include : (1) sensitivity analysis using finite difference; (2) sensitivity analysis using automatic differentiation (AD); and (3) sensitivity analysis with respect to intermediate variables using AD. Numerical example is optimized to show the reliability and effectiveness of the new algorithm.

  • PDF

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Reliability of Visual Gait Analysis according to Clinical Experience Level of Physical Therapists (임상 물리치료사의 경험에 따른 시각적 보행 분석의 신뢰도 연구)

  • Lee, In-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.174-179
    • /
    • 2013
  • Purpose: Visual gait analysis plays a pivotal role in determining the important gait problem of patients. A few studies have been published and have received little attention regarding visual gait analysis on patients with orthopedic problems. The purposes of this study were to investigate the difference of reliability levels according to experience of clinical physical therapists. Methods: Thirty-five clinical physical therapists, 5 high experienced, 15 experienced, and 15 inexperienced, were recruited and individually evaluated these videotaped gait patterns of the participants, and filled up the structured gait analysis form. The gait of nine participants was videotaped. Reliability levels were calculated by the Intraclass Correlation Coefficients (ICC). Results: The inter-rater reliability of high experienced group (ICC=0.56; 95% CI: 0.50-0.62) was comparable to that of the experienced raters (ICC=0.48; 95% CI: 0.43-0.53) and inexperienced group (ICC=0.42; 95% CI: 0.38-0.46). High experienced group reached a higher inter-rater reliability level. The average intra-rater reliability of the high experienced group was 0.70 (ICCs ranging from 0.54 to 0.82). The experienced group reached an average intra-rater reliability of 0.61 (ICCs ranging from 0.47 to 0.81). The inexperienced group attained average ICC values of 0.53 (ICCs ranging from 0.30 to 0.74). Conclusion: Use of a structured gait analysis form as described in this study was found to be moderately reliable. Clinical experience appears to increase the reliability of visual gait analysis.

Reliability Assesment of the Robotic System for Ultrasonic Inspection of Reactor Vessels (원자로 검사로봇의 신뢰도 분석)

  • 엄홍섭;이재철;김재희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.379-379
    • /
    • 2000
  • The robot systems used in nuclear power plants need to be both reliable and safe. As a part of the "Validation of nuclear safety-grade equipment" project, we established reliability analysis program and performed a number of analysis using conventional reliability analysis techniques. This paper describes the procedures, techniques, and results of the analysis utilized in our project. In addition, the paper includes current status of reliability analysis techniques and the summary of foreign case studiesse studies

  • PDF