• 제목/요약/키워드: Analysis of Kinematic

검색결과 1,490건 처리시간 0.031초

구형 3자유도 병렬 메커니즘의 기구학 해석 및 구현 (Kinematic Analysis and Implementation of a Spherical 3-Degree-of-Freedom Parallel Mechanism)

  • 이석희;김희국;오세민;소병록;이병주
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.72-81
    • /
    • 2005
  • A new spherical-type 3-degree-of-freedom parallel mechanism consisting of a two degree-of-freedom parallel module and a serial module is proposed. Two alternative designs for the serial sub-chain are suggested and compared. The first design employs RU joint arrangement for the serial sub chain structure. The second design incorporates a gear chain to drive the distal revolute joint of the serial sub-chain from the base platform of the mechanism. This modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model with respect to three inputs which are located at the base is derived. Thirdly, it is confirmed through simulation that the modified mechanism has much more improved isotropic characteristic throughout the workspace of the mechanism. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

기구학적 커플링으로 구성된 3자유도 병렬 메커니즘 해석 및 설계 (Analysis and Design of 3-DOF Parallel Mechanism Based on Kinematic Couplings)

  • 왕위준;한창수
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.479-486
    • /
    • 2012
  • This paper presents a high-speed automatic micro-alignment system that is a part of an inspection machine for small-sized molded lenses of mobile phones, palm-top computers, and so on. This work was motivated by the shortcomings of existing highest-grade commercial machine. A simple tip/tilt/Z parallel mechanism is designed based on kinematic couplings, which is a 3-degree-of-freedom (3-DOF) moderate-cost alignment stage. It is used to automatically adjust the posture of each lens on the tray, which is impossible by the conventional instrument. Amplified piezoelectric actuators are used to ensure the accuracy and dynamic response. Forward kinematic analysis and simulation show that the parasitic motion is small enough compared to the actuator stroke. From the workspace analysis of the moving platform, it is clear that the output motion range satisfies the design requirements.

공간 복합기구연쇄의 기구학 및 동역학 해석에 관한 연구 (A Study on the Kinematic and Dynamic Analyses of Spatial Complex Kinematic Chain)

  • 김창부;김효식
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2543-2554
    • /
    • 1993
  • In this paper, the kinematic and dynamic analyses of spatial complex kinematic chain are studied. Through the new method both using the set of identification numbers and applying the DenavitHartenberg link representation method to the spatial complex kinematic chain, the kinematic configuration of the chain is represented. Some link in the part of closed chain being fictitiously cutted, the complex kinematic chain is transformed to the branched chain. The kinematic constraint equations are derived from the constraint conditions which the cutted sections of the link have to satisfy. And the joint variables being partitioned in the independent joint variables and the dependent joint variables, the dependent variables are calculated from the independent variables by using the Newton-Raphson iterative method and the pseudoinverse matrix. The equations of motion are derived under the independent joint variables by using the principle of virtual work. Algorithms for dynamic analysis are presented and simulations are done to verify accuracy and efficiency of the algorithms.

6자유도를 갖는 정밀 위치제어용 병렬 매니퓰레이터의 기구학 해석 (Kinematic analysis of a 6-degree-of-freedom micro-positioning parallel manipulator)

  • 박주연;심재홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.213-216
    • /
    • 1996
  • This paper studies a class of in-parallel manipulators with special geometry where the forward displacement analysis problem can be solved easier than the fully parallel manipulators. Three horizontal links of this mechanism provide 3DOFs(Degrees of Freedom), which are one degree of orientational freedom and two degrees of translatory freedom. Three vertical links of this mechanism provide 3DOFs, which are two degrees of orientational freedom and one degree of translatory freedom. The main advantages of this manipulator, compared with the Stewart platform type, are the capability to produce pure rotation and to predict the motion of the moving platform easily. Since this manipulator has simple kinematic characteristics compared with the Stewart platform, controlling in real-time is possible due to less computational burden. The purpose of this investigation is to develope an analytical method and systematic method to analyze the basic kinematics of the manipulator. The basic kinematic equations of the manipulator are derived and simulation is carried out to show the performance of the mechanism.

  • PDF

관절의 수동탄성특성을 이용한 족부의 생체역학적 해석 (Biomechanical Analysis of the Human Foot by Using Passive Elastic Characteristics of Joints)

  • 김시열;최현기
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.197-204
    • /
    • 2004
  • In this study we presented kinematic and kinetic data of foot joints using approximated equations and partial plantar pressure during gait. The maximum angular displacements of each tarsometatarsal joint were found to range from 4$^{\circ}$to 7$^{\circ}$ and the maximum moments were from 200Nㆍcm to 1500Nㆍcm. It was relatively wide distribution. Foot kinematic data calculated from the approximated equations, which were represented by the correlation between moment and angular displacement, and the data from motion analysis were similar. We found that the movements of foot joint were mainly decided by the passive characteristics of the joint when ground reaction force acts. The method of kinematic and kinetic analysis using approximated equations which is presented in this study is considered useful to describe the movements of foot joints in gait simulations.

스트워트 플랫폼 구조를 구속하여 얻어지는 병진형 3 자유도 병렬 메커니즘의 정위치 해석해와 기구학 해석 및 구현 (A Forward Closed-Form Position Solution, Kinematic Analysis And Implementation of a Translational 3-DOF Parallel Mechanism Formed by Constraining a Stewart Platform Structure)

  • 신동민;정재헌;오세민;이병주;김희국
    • 제어로봇시스템학회논문지
    • /
    • 제12권10호
    • /
    • pp.1035-1043
    • /
    • 2006
  • In this study, a translational 3-DOF parallel mechanism formed by constraining the Stewart Platform Mechanism is investigated. The translational 3-DOF parallel mechanism has three struts(3-UPS type serial subchains) and in addition, has a PPP type serial subchain in the middle of the mechanism. Firstly, the closed-form forward and reverse position solutions are derived for this mechanism. And analysis on kinematic characteristics using isotropic index of the Jacobian is conducted to examine effects of design parameters for the mechanism. Lastly, a prototype mechanism is implemented and the kinematic performance of the translational 3-DOF parallel mechanism was verified through experimental work.

한국형 고속전철용 판토그라프 구조설계 검증 및 설계 최적화 (Structual Design Verification and Design Optimization of Pantograph for Korean Very High Speed Train)

  • 정경렬;김휘준;백진성;박수홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1229-1234
    • /
    • 2001
  • There are three items, which are panhead displacement, tilting angle of pan head, required moment of main shaft, which representing kinematic performance of pantograph. Kinematic variables effective on kinematic performance are length of each components and installation angle, In this study, cost function is defined with 3 items, By this cost function, length of thrust rod was optimized. Finite element analysis was used to consider structural soundness. Finite element model was qualified by comparison between analysis result with experiment result. By qualified F.E, model various severe condition was simulated to consider structural soundness.

  • PDF

Optimum Design of a New 4-DOF Parallel Mechanism

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.302-307
    • /
    • 2005
  • Recently, lots of parallel mechanisms for spatial 3-DOF and 6-DOF were investigated. However, research on 4-DOF and 5-DOF parallel mechanisms has been very few. In this paper, we propose a 4-DOF parallel mechanism that consists of 3-rotational and 1-translational motions. The kinematic characteristics of this mechanism are analyzed in terms of an isotropic index and maximum force transmission ratio, and its kinematic optimization is being conducted to ensure enhanced kinematic performances

  • PDF

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

병렬 운동 기구의 미끄럼 볼 조인트 개발에 관한 연구 (A Study on the Sliding Ball Joint of Parallel Kinematic Mechanism)

  • 유대원;이재학
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.982-989
    • /
    • 2009
  • Parallel Kinematic Mechanism (PKM) is a device to perform the various motion in three-dimensional space and it calls for six degree of freedom. For example, Parallel Kinematic Mechanism is applied to machine tools, medical equipments, MEMS, virtual reality devices and flight motion simulators. Recently, many companies have tried to develop new Parallel Kinematic Mechanism in order to improve the cycle time and the precisional tolerance. Parallel Kinematic Mechanism uses general universal joint and spherical joint, but such joints have accumulated tolerance problems. Therefore, it causes position control problem and dramatically life time reduction. This paper focused on the rolling element to improve sliding precision in new sliding ball joint development. Before the final design and production, it was confirmed that new sliding ball joint held a higher load and a good geometrical structure. FEM analysis showed a favorable agreement with tensile and compressive testing results by universal testing machine. In conclusions, a new sliding ball joint has been developed to solve a problem of accumulated tolerance and verified using tensile and compressive testing as well as FEM analysis.