• Title/Summary/Keyword: Analysis of Kinematic

Search Result 1,492, Processing Time 0.028 seconds

Leg Length Discrepancy to Influence on Kinematic Changes of the Pelvis and the Hip during Gait

  • Yong, MinSik;Park, SoHyun
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.368-371
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of leg length discrepancy on kinematic changes of the pelvis and hip during gait. Methods: A total of ten healthy women with no history of neurological, musculoskeletal surgery or injuries, or pain in the lower limbs were recruited. They were assigned to two groups; the experimental group (LLD) consisting of five subjects leg length discrepancy of 10mm to 18mm and the control group (CON) consisting of five subjects leg length discrepancy of<10 mm. All participants were instructed to perform three walking trials for further analysis by using the Cortex 3.0 software program. Independent T-test and Mann-Whitney test were used to examine the effects of mild LLD on kinematic changes of the pelvis and hip during gait. Results: Angles of hip flexion, hip abduction, pelvic obliquity, and pelvic tilt in the experimental group were not significantly different compared to those of the control group. Conclusion: Mild leg length discrepancy induces kinematic changes in the lower limbs, including decreased hip flexion, increased hip abduction, and increased pelvic obliquity in the shorter limb, and increased hip adduction and increased pelvic obliquity in the longer limb. However, those changes were not significant.

Velocity and Acceleration Error Analysis of Planar Mechanism Due to Tolerances (기계시스템의 공차에 의한 속도 및 가속도 오차의 해석)

  • 이세정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.351-358
    • /
    • 1994
  • A probabilistic model and analysis methods to determine the means and variances of the velocity and acceleration in stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link's effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package with minor modification. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data are the nominal linkage model and statistical information. The "effective link length" model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper Ksolves the higher-order kinematic problems for the probabilistic design analysis of stochastically-defined mechanisms.echanisms.

Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network (인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Jung, Jong-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

The Study of Kinematic Analysis and Control by Optimum Design of Redundantly Actuated Parallel Robot (여유구동형 병렬 로봇의 최적설계를 통한 기구학적 분석 및 제어에 관한 연구)

  • Kim, Byeong-Soo;Lee, Jeh-Won;Kim, Young-Suk;Kim, Jin-Dae;Lee, Hyuk-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.426-432
    • /
    • 2012
  • In this study, kinematic analysis of forward kinematic, inverse kinematic and jacobian for 6-bar parallel robot was analyzed. In order to analyze the maximum workspace of 6-bar parallel robot, maximum revolution range of active joint was calculated. Also, to analyze forward dynamics and inverse dynamics of 6-bar parallel robot, recurdyn and simmechanics was utilized. Using a PI controller and Feedforward controller make an experiment with square motion of end_effector. The reference value of active joint and trace of end_effector were compared with actual experimental value.

Forward kinematic analysis of a 6-DOF parallel manipulator using genetic algorithm (유전 알고리즘을 이용한 6자유도 병렬형 매니퓰레이터의 순기구학 해석)

  • 박민규;이민철;고석조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1624-1627
    • /
    • 1997
  • The 6-DOF parallel manipulator is a closed-kindmatic chain robot manipulator that is capable of providing high structural rigidity and positional accuracy. Because of its advantage, the parallel manipulator have been widely used in many engineering applications such as vehicle/flight driving simulators, rogot maniplators, attachment tool of machining centers, etc. However, the kinematic analysis for the implementation of a real-time controller has some problem because of the lack of an efficient lagorithm for solving its highly nonliner forward kinematic equation, which provides the translational and orientational attitudes of the moveable upper platform from the lenght of manipulator linkages. Generally, Newton-Raphson method has been widely sued to solve the forward kinematic problem but the effectiveness of this methodology depend on how to set initial values. This paper proposes a hybrid method using genetic algorithm(GA) and Newton-Raphson method to solve forward kinematics. That is, the initial values of forward kinematics solution are determined by adopting genetic algorithm which can search grobally optimal solutions. Since determining this values, the determined values are used in Newton-Raphson method for real time calcuation.

  • PDF

Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot (이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석)

  • 김진석;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF

Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension (현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증)

  • Kim Sangsup;Jung Hongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

Ratcheting behavior of 90° elbow piping under seismic loading

  • Chen, Xiaohui;Huang, Kaicheng;Ye, Sheng;Fan, Yuchen;Li, Zifeng
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.489-499
    • /
    • 2019
  • Elastic-plastic behavior of nuclear power plant elbow piping under seismic loads has been conducted in this study. Finite element analyses are performed using classical Bilinear kinematic hardening model (BKIN) and Multilinear kinematic hardening model (MKIN) as well as a nonlinear kinematic hardening model (Chaboche model). The influence of internal pressure and seismic loading on ratcheting strain of elbow pipe is studied by means of the three models. The results found that the predicted results of Chaboche model is maximum, closely followed by the predicted results of MKIN model, and the minimum is the predicted results of BKIN model. Moreover, comparisons of analysis results for each plasticity model against predicted results for a equivalent cyclic loading elbow component and for a simplified piping system seismic test are presented in the paper.

Kinematic/dynamic modeling and analysis of a 3 degree-of-freedom redundantly actuated mobile robot (세바퀴 여유구동 모바일 로봇의 기구학/동력학 모델링 및 해석)

  • Park, Seung;Lee, Byung-Joo;Kim, Hee-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.528-531
    • /
    • 1997
  • This paper deals with the kinematic and dynamic modeling of a 3 degree-of-freedom redundantly actuated mobile robot for the purpose of analysis and control. Each wheel is driven by two motors for steering and driving. Therefore, the system becomes force-redundant since the number of input variable is greater than the number of output variable. The kinematic and dynamic models in terms of three independent joint variables are derived. Also, a load distribution method to determine the input loads is introduced. Finally we demonstrate the feasibility of the proposed algorithms through simulation.

  • PDF

Dynamic Analysis of Multibody Tracked Vehicles (I) : Development of the Recursive Formulation Module (다물체로 구성된 궤도 차량에 대한 동적 해석 (I) : 순환방정식 모듈 개발)

  • 신장호;최진환;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.11-17
    • /
    • 1998
  • In this study, a procedure is presented for the dynamic analysis of a multibody tracked vehicle system. the planner tracked vehicle model used in this investigation is assumed to consist of two kinematically decoupled subsystems, i.e., the chassis subsys- tem and track sub-system. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. The recursive kinematic and dynamic formulation module of the vehicle will be developed.

  • PDF