• 제목/요약/키워드: Analysis of Cell Image

검색결과 262건 처리시간 0.037초

의료영상진단기의 현황과 전망

  • 조장희
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.106-108
    • /
    • 1989
  • A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells.

  • PDF

Segmentation by Contour Following Method with Directional Angle

  • Na, Cheol-Hun;Kim, Su-Yeong;Kang, Seong-Jun
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.874-877
    • /
    • 2012
  • This paper proposes the new method based on contour following method with directional angle to segment the cell into the nuclei. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. this paper, improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the Thyroid Gland cell image with difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a result of experiment using features proposed in this paper, get a better segmentation rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells. The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

휴대폰의 CFA 패턴특성을 이용한 사진 위변조 탐지 (Automatic Detection of Forgery in Cell phone Images using Analysis of CFA Pattern Characteristics in Imaging Sensor)

  • 심재연;김성환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.1118-1121
    • /
    • 2010
  • With the advent of cell phone digital cameras, and sophisticated photo editing software, digital images can be easily manipulated and altered. Although good forgeries may leave no visual clues of having been tampered with, they may, nevertheless, alter the underlying statistics of an image. Most digital camera equipped in cell phones employ a single image sensor in conjunction with a color filter array (CFA), and then interpolates the missing color samples to obtain a three channel color image. This interpolation introduces specific correlations which are likely to be destroyed when tampering with an image. We quantify the specific correlations introduced by CFA interpolation, and describe how these correlations, or lack thereof, can be automatically detected in any portion of an image. We show the efficacy of this approach in revealing traces of digital tampering in lossless and lossy compressed color images interpolated with several different CFA algorithms in test cell phones.

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

Quantitative Image Analysis of Fluorescence Image Stacks: Application to Cytoskeletal Proteins Organization in Tissue Engineering Constructs

  • Park, Doyoung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.103-113
    • /
    • 2019
  • Motivation: Polymerized actin-based cytoskeletal structures are crucial in shape, dynamics, and resilience of a cell. For example, dynamical actin-containing ruffles are located at leading edges of cells and have a significant impact on cell motility. Other filamentous actin (F-actin) bundles, called stress fibers, are essential in cell attachment and detachment. For this reason, their mechanistic understanding provides crucial information to solve practical problems related to cell interactions with materials in tissue engineering. Detecting and counting actin-based structures in a cellular ensemble is a fundamental first step. In this research, we suggest a new method to characterize F-actin wrapping fibers from confocal fluorescence image stacks. As fluorescently labeled F-actin often envelope the fibers, we first propose to segment these fibers by diminishing an energy based on maximum flow and minimum cut algorithm. The actual actin is detected through the use of bilateral filtering followed by a thresholding step. Later, concave actin bundles are detected through a graph-based procedure that actually determines if the considered actin filament is enclosing the fiber.

위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류 (Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor)

  • 강미선;이정엄;김혜련;김명희
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권4호
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

양식 문서 영상에서 도표 구조 분석을 위한 라인 추적 알고리즘 (Line Tracking Algorithm for Table Structure Analysis in Form Document Image)

  • 김계경
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.151-159
    • /
    • 2021
  • 도표로 작성된 양식 문서에서 도표의 레이아웃 해석에 필요한 그리드 라인을 추출하기 위해 다양한 필터링 또는 모폴로지 등의 방법을 사용하여 직선 성분을 선명하게 개선시키기 위한 연구들이 많이 진행되고 있다. 도표의 직선 성분을 선명화하더라도 직선 내부에 절단 점들이 존재하거나 기울어진 경우에는 직선 추출이 어렵고 도표 셀들의 레이아웃을 논리적으로 표현하는데 여전히 어려움을 겪을 수 있다. 본 연구에서는 직선에 절단점들이 존재하거나 기울어져도 직선을 검출할 수 있는 라인 추적 알고리즘을 제안하였다. 이를 이용하여 그리드 라인을 추출하고 라인들의 교차점 및 셀 정보들을 찾아 도표의 구조를 분석할 수 있는 알고리즘을 마련하였다. 제안한 알고리즘을 실제 양식 문서 영상을 대상으로 실험한 결과 평균 0.41초 처리시간에 96.4%의 도표 구조를 분석할 수 있음을 확인하였다.

전반사 형광 이미지 분석을 통한 세포 부착점의 운동 특성에 관한 연구 (On the Dynamic Characteristics of Cell Contact by Analyzing TIRE Images)

  • 이용구;진송완;구상모;유정열
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.380-387
    • /
    • 2007
  • We carried out an image analysis of living cells forming their contacts at the bottom of the cell culturing substrate. In order to visualize the contact area selectively, we adopted total-internal-reflection-fluorescence (TIRF) method, which can illuminate the specimen volume within only several hundred nano-meters above the substrate. From the fluorescent intensity of the TRF image, we could calculate the distance of the cell surface from the substrate. As a result, we visualized the origin of cell contacts, their movements, and the change of cell-contact type from the close-contact into focal-contact with information of its vertical displacement representing the temporal evolution process of the three-dimensional cell-surface-profile near the contact area during this metamorphosis.