• Title/Summary/Keyword: Analysis condition

Search Result 18,024, Processing Time 0.048 seconds

The Analysis of Center of Pressure(COP) Displacement under Loading Position during Walking (보행 시 부하 위치에 따른 족저압 중심(COP) 이동 분석)

  • Park, Soo-Jin;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Purpose : The purpose of this study was to investigate the effect of loading position on plantar center of pressure(COP) displacement when carrying a schoolbag during walking. Methods : Forty-four normal subjects were randomly assigned to five groups according to the method of carrying a schoolbag. The carrying a schoolbag methods were classified into five conditions: no bag (condition 1), a backpack (condition 2), a shoulder bag (condition 3), a cross bag (condition 4), a one-hand bag (condition 5). COP displacement such as anteroposterior distance and mediolateral distance of COP were measured with F-scan system. The repeated one-way analysis of variance (ANOVA) and independent t-test were used to confirm the statistical significance. Results : In the comparison of parameters of COP displacement between conditions, anteroposterior distance and mediolateral distance in the left foot and mediolateral distance in the right foot were not significantly different(p>.05), but anteroposterior diatance in the right foot was significantly different(p>.05). Between left and right foot, at condition 1 and 5 the mediolateral distance of COP was significantly different(p<.05) but anteroposterior distance at condition 1 and 5, anteroposterior distance and mediolateral distance of COP at condition 2, 3 and 4 were not significantly different(p>.05). Conclusion : These findings showed that the various loading position by five types of carrying a schoolbag didn't have influence significantly on COP displacement on during walking because of mechanism of postural adaption.

Development of Pavement Condition Index for the Municipal Pavements (시단위 포장도로의 포장평가지수개발)

  • Moon, Hyung-Chul;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.221-230
    • /
    • 2008
  • In Korea, Expressway and National Highway System has been continually managed by their own pavement management system. The pavement condition evaluation system has not been developed for the municipal roads except for Seoul city. Therefore, this study focuses on analyzing the characteristics of distress in major city's pavement and developing the pavement condition index for the municipal PMS. Panel rating and pavement condition survey for the selected pavement sections were conducted for developing pavement condition index. Municipal level pavement condition index(MPCI) was developed by statistical analysis. Also, a sensitivity analysis for each independent variable of the MPCI and comparison with other pavement condition indicies, such as SPI and HPCI, were performed.

  • PDF

Immediate Effect on Mu-rhythm of Somatosensory Cortex using Visual Feedback Training in Healthy Adults (건강한 성인에서 시각적 되먹임 훈련이 감각운동겉질의 뮤-리듬에 미치는 즉각적인 효과 )

  • Su-Bok Kim;On-Seok Lee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.47-53
    • /
    • 2023
  • PURPOSE: A visual feedback method was proposed to induce brain stimulation in a stroke patient, and among them, there was a treatment using a mirror. On the other hand, mirror therapy focuses only on the functional changes in body movements, and analysis of neurophysiological mechanisms of brain activity is lacking. In addition, studies on evaluating the activity and response generated in specific brain regions during visual feedback training using mirrors are insufficient. METHODS: Fifteen healthy adults (male: 10, female: 5, Years: 23.33 ± 1.23), who were right-handed were recruited. By attaching the C3, Cz, and C4 channels in the sensorimotor cortex using an electroencephalogram, training was performed under the conditions without mirror-based visual feedback (No-condition) and with visual feedback (Tasks-condition). At this time, the immediate activity of the mu-rhythm in response to training was separated and evaluated. RESULTS: The tasks-condition of C3, Cz, and C4 channels activated the relative mu-rhythm rather than the no-condition, and all showed significant differences (p < .05). In addition, in all channels at the start time, the tasks-condition was more active than the no-condition (p < .05). The activity of the cortical response was higher in the tasks-condition than in the no-condition (p < .05). CONCLUSION: The mu-rhythm activity can be evaluated objectively when visual feedback using a mirror is applied to healthy subjects, and a basic analysis protocol is proposed.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

Faultproof Design in Space for Monopropellant Rocket Engine Assembly (단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

Work Condition Analysis Process for Improving Reliability of Work Plan (작업계획의 신뢰도 향상을 위한 작업여건분석 체계)

  • Song, Ji-Won;Yu, Jung-Ho;Kim, Chang-Duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.36-44
    • /
    • 2009
  • The sum of each work duration are entire period in construction project. Each work occurs to be late, the total period of construction project will delays. Therefore, the total period of construction project will not be delayed if probability of work progress makes higher. Finding each work constraints performs constraints analysis in process of construction for checking probability of work progress. Grasp work constraints through the constraints analysis and removes. This research will show preventing delay of construction project, through work condition analysis process.

An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation (컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석)

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF

Evaluation of Eco-Hydrological Changes in the Geum River Considering Dam Operations : II. Hydraulic Fish Habitat Condition Analysis (댐 운영을 고려한 금강의 생태.수문학적 변화 평가 : II. 수리학적 어류서식처 조건 분석)

  • Park, Sang-Young;Kim, Jeong-Kon;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.407-414
    • /
    • 2009
  • A quantitative analysis was conducted to study the impacts of artificial flow alteration on fish habitate condition change in the Geum River downstream the Daechung Multi-purpose Dam (DMD). River Analysis Package (RAP) was employed for the analysis and three fish species of black shiner, long nose barbel and Korean shinner were selected as icon species. The results of the analysis showed enhaced fish habitat conditions during low flow seasons in spring and fall after DMD construction, while the impact of the Youngdam Multipurpose Dam located upstream the DMD was insignificant. This result could be attributed to the fact that the increased flow during dry seasons helped create preferable habitat conditions for the fish species tested in this study.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

A Study on Injection Molding Process and Quality Monitoring by Response Surface Analysis (반응표면 분석법에 의한 사출공정 및 품질 모니터링에 관한 연구)

  • Min, Byeong-Hyeon;Lee, Kyeong-Don;Yu, Byung-Kil
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • Quality of injection molded parts is dependent on both mold design and processing conditions. From the mold design point of view, an optimal shrinkage should be used to compensate the shrinkage of molded parts. From the processing point of view, it is important to analyze the priority of processing conditions because a number processing conditions affect the quality of molded parts. Processing analysis employing the design of experiment was performed, and the shrinkage of molded part was considered as a characteristic parameter to improve the quality. As the result of the analysis of variance on SN ratio of a characteristic value, injection speed and bolding pressure were selected as two effective process parameters. Regression analysis on shrinkage and processing conditions was carried out, and an optimal processing condition was obtained by the response surface analysis. Shrinkage at the optimal condition could be used to reduce the number of try-cut at the step of mold making. The ranges of indirect control parameter, such as maximum cavity pressure or weight, measured at the optimal processing condition were used for monitoring the quality of molded parts in process.

  • PDF