• Title/Summary/Keyword: Analysis Engine

Search Result 3,516, Processing Time 0.031 seconds

Two Spool Mixed-Flow Turbofan Engine Performance Analysis Modeling (2 스풀 혼합흐름 배기방식 터보팬 엔진 성능해석 모델링)

  • Seungheon Lee;Hyoung Jin Lee;Sangjo Kim;Gyujin Na;Jung Hoe Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2023
  • In this study, performance analysis modeling of two spool mixed flow type turbofan engine according to steady-state and transient is performed. The target engine is selected as F100-PW-229 from Pratt & Whitney, and main engine components including fan, high pressure compressors, combustion, high pressure turbines, low pressure turbines, mixer, convergent-divergent nozzle are modeled. The cooling effect of turbine through secondary flow path are considered in engine simulation model. We develop in-house Matlab/Simulink-based engine performance analysis program capable of analyzing internal engine state and compare it with GASTURB which is generally used as a commercial engine analysis program.

Dynamic Analysis and Optimal Design of Engine Mount Systems with Consideration of Foundation Flexibility

  • Lee, Sang-Beom;Yim, Hong-Jae;Lee, Jang-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.51-58
    • /
    • 2001
  • Equations of motion of an engine mount system including foundation flexibility are derived. Forced vibration analysis is carried out for the given engine mount system excited with the unbalanced force and moment. A new optimal design method for the engine mount system is proposed, in which vibration characteristics of the chassis frame structure are considered as design parameters.

  • PDF

Numerical Analysis on the Oil Film Behavior of Engine Main Bearing Considering Dilution of Diesel Fuel (경유 혼입을 고려한 엔진 메인 베어링의 유막거동에 관한 수치적 연구)

  • Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • This paper describes the influence on engine main bearing behavior of the oil film when the fuel is diluted on a diesel engine equipped with DPF system. Oil film pressure and the thickness is calculated in accordance to the fuel dilution. The calculation is based on the numerical analysis of the engine main bearing. As a result, the engine oil viscosity decreased as the fuel dilution increased. This led the increment of the maximum oil thickness pressure. Verification of the minimum oil film thickness settlement by the engine gas pressure and the fuel dilution was confirmed. Destruction possibility of the engine main bearing was foreseen when the engine speed was 2000 rpm with the fuel dilution 15% and the 5W40 engine oil.

LEAN-BURN ENGINE - POTENTIAL ANALYSIS

  • Kowalewicz, A.
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.147-155
    • /
    • 2001
  • Analysis of the thermodynamic cycle of IC engine from the point of view of economy and emissions was carried out. From this analysis potential capability of engine development was derived. This potential capability is lean-burn engine, fuelled with homogeneous mixture with $\lambda \geq$ 1.4. Several different modes of fuelling were proposed and tested on one-cylinder test engine from the point of view of extending lean operating limit of the engine, emissions and fuel economy. Among them were: fuelling with evaporated preheated gasoline, with gas (LPG evaporated) and with liquid butane. From these modes, fuelling with liquid butane injected to inlet port was selected and finally tested. This novel system of fuelling offered better than standard engine performances and emissions at lean operating limit. These results were validated on full-scale two-cylinder engine.

  • PDF

Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron (CGI를 이용한 대형 디젤엔진의 구조해석)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF

A Study on the Prediction of Engine Condition of Supersonic Aircraft through the Wear Debris Monitoring Technique (마모입자 분석기술을 이용한 초음속 항공기 엔진의 상태 예측에 관한 연구)

  • 정병학;정동윤
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.82-88
    • /
    • 1997
  • This paper describes an empirical equation which can be used to predict the engine condition of supersonic aircraft. The equation, which is derived from the trend analysis of JOAP data, represents the concentration of Fe particles in the engine oil. The result of the trend analysis shows that the concentration of Fe particles is a function of running time of engine oil. Meanwhile the slope of Fe concentration is a function of running time of engine. Threfore, the empirical equation was derived as $w=a(t_e).t_o+b$. However, the equation could not enough to diagnose the damaged part of engine quantitatively. To make up for the weak points of the equation, qualitative analysis was carried out. For that purpose wear debris were collected from the abnormal engine and analyzed by EDS to detect the damaged parts of engine.

A Study on the Optimization of Multiple Injection Strategy for a Diesel Engine using Grey Relational Analysis and Linear Regression Analysis (선형 회귀 분석과 회색 관계 분석을 이용한 디젤엔진의 다단연료분사 제어전략 최적화 연구)

  • Kim, Sookyum;Woo, Seungchul;Kim, Woong Il;Park, Sangki;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • Recently, the engine calibration technique has been much more complicated than that of the past engine case in order to satisfy the strict emission regulations. The current calibration method for the diesel engine which has an increasing market is both costly and time-consuming. New engine calibration method is required to develop for high-quality diesel engines with low cost and release it at the appropriate time. This study provides the optimal calibrating technique for complex engine systems using statistical modeling and numerical optimization. Firstly, it design a test plan based on Design of Experiments, a V-optimality methodology which is suitable looking for set-points, and determine the shape of test engine response. Secondly, it uses functions to make linear regression model for data analysis and optimization to fit the models of engines behavior. Finally, it generates the optimal calibrations obtained directly from empirical engine models using Grey Relational Analysis and compares the calibrations with data. This method can develop a process for systematically identifying the optimal balance of engine emissions.

Dynamic structural analysis due to dynamic motion of driving parts in low speed large diesel engine structures (저속 대형 디젤 엔진 구조물 구동부의 운동에 따른 동적 구조 해석)

  • Lee, J.H.;Jung, J.H.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.901-906
    • /
    • 2001
  • Finite element method is used for the structural analysis of low speed large diesel engine structures, and the kinematic and mechanism analysis is performed to compute loads applied to the engine structures. A typical diesel engine is used as an example and static and dynamic structural analyses are demonstrated. Dynamic stress of engine is measured during the sea-trial operation of the ship.

  • PDF

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF

Structural Analysis of Sinusoidal Vibration Load for Liquid Rocket Engine System (액체로켓엔진 시스템 정현파 진동 구조해석)

  • Chung, Yong-hyun;Lee, Eun-seok;Park, Soon-young;Yang, Chang-hwan;Jung, Jin-taeg
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.20-23
    • /
    • 2009
  • The structural analysis of liquid rocket engine was performed in the case of sinusoidal vibration load to verify structural safety. The finite element model is composed with main liquid rocket engine components, combustion chamber, turbopump, gas-generator, pyro-starter, main pipes, main valve, heat-exchanger, gimbal-mount and brackets. Natural vibration mode analysis and structural analysis for sinusoidal vibration load were performed. The natural mode frequency of liquid rocket engine is twice than that of launch vehicle. In the case of stress result of sinusoidal vibration load, the part of maximum stress has 1.4 margin, so the engine structure is safe for sinusoidal vibration load.

  • PDF