• Title/Summary/Keyword: Analog PLL

Search Result 64, Processing Time 0.023 seconds

Design of a CMOS Base-Band Analog Receiver for Wireless Home Network (무선 홈 네트워크용 CMOS 베이스밴드 아날로그 수신단의 설계)

  • 최기원;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, a CMOS baseband analog receiver for wireless home network is discussed. It is composed of a Gilbert type mixer, an Elliptic 6th order 1ow pass filter, and a 6-bit A/D converter. The main role of the mixer is generating a mixed analog signal between the 200MHz output signal of CMOS RF stage and the 199MHz local oscillator. After the undesired high frequency component of the mixed signal comes out. Finally, the analog signal is converted into digital code at the 6-bit A/D converter, The proposed receiver is fabricated with 0.25${\mu}{\textrm}{m}$ 1-poly 5-metal CMOS technology, and the chip area is 200${\mu}{\textrm}{m}$ X1400${\mu}{\textrm}{m}$. the receiver consumes 130㎽ at 2.5V power supply.

Controller with Voltage-Compensated Driver for Lighting Passive Matrix Organic Light Emitting Diodes Panels

  • Juan, Chang Jung;Tsai, Ming Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.673-675
    • /
    • 2004
  • This study proposes controller with voltage-compensated drivers for producing gray-scaled pictures on passive matrix organic light emitting diodes (PMOLEDs) panels. The controller includes voltage type drivers so the output impedance of the driver is far less than that of the current-type driver. Its low output impedance provides better electron-optical properties than those of traditional current drivers. A free running clock and a group of counters are applied to the gray-scaled function so that phase lock loop (PLL) circuit can be reduced in the controller. A pre-charge function is used to enhance performance of the luminance of an active OLED pixel. As a result, distribution of the low gray level portion is achieved linear relationship with input data. In this work, the digital part of the proposed controller is implemented using FPGA chips, and analog parts are combined with a digital-analog converter (DAC) and analog switches. A still image is displayed on a $48^{\ast}64$ PMOLEDs panel to assess the luminance performance fir the controller. Based on its cost requirement and luminance performance, the controller is qualified to join the market for driving PMOLEDs panels.

  • PDF

Design of digital clock level translator with 50% duty ratio from small sinusoidal input (작은 정현파입력의 50% Duty Ratio 디지털 클럭레벨 변환기 설계)

  • Park, Mun-Yang;Lee, Jong-Ryul;Kim, Ook;Song, Won-Chul;Kim, Kyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2064-2071
    • /
    • 1998
  • A new digital clock level translator has been designed in order to produce a clock source of the internal logic circuits. The translator output has 50% duty ratio from small sinusoidal input such as TCXO which oscillates itself in poratable components. The circuit consists of positive and negative comparators, RS latch, charge pump, and reference vol- tage generator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator reference, producing output waveform with valid 50% duty ratio of the digital signal level. The designed level translator can be used as a sampling clock source of ADC, PLL and the colck source of the clock synthesizer. The circuit wasdesigned in a 0.8.mu.m analog CMOS technology with double metal, double poly, and BSIM3 circuit simulation model. From our experimental results, a stable operating characteristics of 50 +3% duty ratio was obtained from the sinusoidal input wave of 370 mV.

  • PDF

A Design of Gate Driver Circuits in DMPPT Control for Photovoltaic System (태양광 분산형 최대전력점 추적 제어를 위한 고전압 게이트 드라이버 설계)

  • Kim, Min-Ki;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2014
  • This paper describes the design of gate driver circuits in distributed maximum power point tracking(DMPPT) controller for photovoltaic system. For the effective DMPPT control in the existence of shadowed modules, high voltage gate driver is applied to drive the DC-DC converter in each module. Some analog blocks such as 12-b ADC, PLL, and gate driver are integrated in the SoC for DMPPT. To reduce the power consumption and to avoid the high voltage damage, a short pulse generator is added in the high side level shifter. The circuit was implemented with BCDMOS 0.35um technology and can support the maximum current of 2A and the maximum voltage of 50V.

An Implementation of Active Power Filler that Adopts to a Frequency Variation using the VCGIC(Voltage Controlled Generalized Impedance Converter (전압 제어 임피던스 변환기를 이용한 전원주파수 적응형 능동 전력 필터의 구현)

  • Jang, Mok-Sun;Kim, Sang-Hoon;Lee, Hu-Chan;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.88-95
    • /
    • 2006
  • This paper proposes an analog type Active Power Filter that adapts to the frequency change of a distributed power supply system. The proposed system removes the harmonic currents in the source power by injecting a compensation current that has the same frequency, 180 degree out of phase with the harmonic currents generated by the load. The detection of the harmonics in the source power for creating the compensating current is realized by a PLL(Phase Lock Loop) and a VCGIC(Voltage Controlled Generalized Impedance Converter). The operation of the proposed system is verified by simulation and experiment.

Design of Low Update Rate Phase Locked Loops with Application to Carrier Tracking in OFDM Systems

  • Raphaeli Dan;Yaniv Oded
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.248-257
    • /
    • 2005
  • In this paper, we develop design procedures for carrier tracking loop for orthogonal frequency division multiplexing (OFDM) systems or other systems of blocked data. In such communication systems, phase error measurements are made infrequent enough to invalidate the traditional loop design methodology which is based on analog loop design. We analyze the degradation in the OFDM schemes caused by the tracking loop and show how the performance is dependent on the rms phase error, where we distinguished between the effect of the variance in the average phase over the symbol and the effect of the phase change over the symbol. We derive the optimal tracking loop including optional delay in the loop caused by processing time. Our solution is general and includes arbitrary phase noise apd additive noise spectrums. In order to guarantee a well behaved solution, we have to check the design against margin constraints subject to uncertainties. In case the optimal loop does not meet the required margin constraints subjected to uncertainties, it is shown how to apply a method taken from control theory to find a controller. Alternatively, if we restrict the solution to first or second order loops, we give a simple loop design procedure which may be sufficient in many cases. Extensions of the method are shown for using both pilot symbols and data symbols in the OFDM receiver for phase tracking. We compare our results to other methods commonly used in OFDM receivers and we show that a large improvement can be gained.

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.

A 0.4-2GHz, Seamless Frequency Tracking controlled Dual-loop digital PLL (0.4-2GHz, Seamless 주파수 트래킹 제어 이중 루프 디지털 PLL)

  • Son, Young-Sang;Lim, Ji-Hoon;Ha, Jong-Chan;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.65-72
    • /
    • 2008
  • This paper proposes a new dual-loop digital PLL(DPLL) using seamless frequency tracking methods. The dual-loop construction, which is composed of the coarse and fine loop for fast locking time and a switching noise suppression, is used successive approximation register technique and TDC. The proposed DPLL in order to compensate the quality of jitter which follows long-term of input frequency is newly added cord conversion frequency tracking method. Also, this DPLL has VCO circuitry consisting of digitally controlled V-I converter and current-control oscillator (CCO) for robust jitter characteristics and wide lock range. The chip is fabricated with Dongbu HiTek $0.18-{\mu}m$ CMOS technology. Its operation range has the wide operation range of 0.4-2GHz and the area of $0.18mm^2$. It shows the peak-to-peak period jitter of 2 psec under no power noise and the power dissipation of 18mW at 2GHz through HSPICE simulation.

DPLL System Development using 100GHz Band Gunn VCO (100GHz 대역 Gunn VCO를 이용한 DPLL 시스템 개발연구)

  • Lee, Chang-Hoon;Kim, K.D.;Chung, M.H.;Kim, H.R.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.210-215
    • /
    • 2006
  • In this paper, we develop the PLL system of the local oscillator system using Gunn oscillator VCO for millimeter wave band receiving system. The local oscillator system consists of the $86{\sim}115GHz$ Gunn. diode oscillator part, the RF processing part including the diplexer and the harmonic mixer, and the DPLL system including Gunn modulator and controller. Based on this configuration, we verify the frequency and power stability of the developed local oscillator system. We developed system which applied to DPLL technique instead of the existing analog PLL method to accomplish this purpose. The developed system for this purpose is tested the frequency and power stability for a long time to confirm performance. Since we confirmed this system that had frequency characteristic of within ${\pm}10Hz$, very fine output drift power characteristic of $0.2{\sim}0.3dBm$ and about 200MHz locking range, it verified suitable for cosmic radio receiving system through the test result.