• Title/Summary/Keyword: Anaerobic sludge

Search Result 513, Processing Time 0.026 seconds

Ferric Chloride Addition Enhances Performance of Bioelectrochemical Anaerobic Digestion of Sewage Sludge at Ambient Temperature (제2철 이온을 이용한 상온조건에서 하수슬러지의 생물전기화학 혐기성소화 성능향상)

  • Feng, Qing;Song, Young-Chae;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.618-626
    • /
    • 2016
  • The influence of ferric ion ($Fe^{+3}$) on bioelectrochemical anaerobic digestion for sewage sludge was explored at ambient temperature ($25^{\circ}C$). Before the addition of ferric ion, the removal of volatile solids (VS) was 65.9% and the specific methane production rate was 370 mL/L/d. After the addition of ferric ion (200 ppm) to feed sludge, the bioelectrochemical anaerobic digester was more stable in the state variables including pH, alkalinity, COD and VFAs, and the VS removal and specific methane production rate were increased to 69.8% and 396 mL/L/d, respectively. However, the methane content in biogas was slightly reduced by the addition of ferric ion, indicating that the activity of planktonic anaerobic bacteria (PAB) was more improved after the addition of ferric ion. The dominances of syntrophic bacteria (Cloacamonas) and hyrolytic bacteria (Saprospiraceae, Ottowia pentelensis) in the PAB were increased by the addition of ferric ion. The addition of ferric ion improved the performance of bioelectrochemical anaerobic digestion for sewage sludge at ambient temperature.

Effect of Temperature-increase Rate and Terminal Temperature on the Solubilization of Sewage Sludge using Microwave Irradiation

  • Park, Woon-Ji;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Solubilization of sewage sludge creates favorable conditions for anaerobic microorganisms to produce biogas. In this paper, we quantify the effect of heating pretreatment on the degree of solubilization of sewage sludge. The pretreatment process was carried out using a lab-scale industrial microwave unit (2450 MHz frequency). Response surface analysis was applied to determine the combination of temperature-increase rate (ramp rate) (2.9 to 17.1 ${^{\circ}C}$/min) and terminal temperature (52 to 108${^{\circ}C}$). Both ramp rate and temperature significantly affected the solubilization degree of sludge. Within the design boundaries, the conditions predicted to maximize the solubilization degree of 15.8% were determined to be 2.9 ${^{\circ}C}$/min and 104${^{\circ}C}$.

Preparation and Characteristics of Immobilized Sludge by the PAA Entrapment Method (PAA 포괄법에 의한 고정화 슬러지의 제조 및 특성에 관한 연구)

  • 최석순
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.49-54
    • /
    • 2002
  • This study was conducted to evaluate the feasibility and characteristics of poly acrylamide (PAA) immobilized sludge as a microbial entrapment bead for wastewater treatment. In the PAA method of immobilized sludge, it was found that the optimum acrylamide concentration for actual wastewater treatment was to be 12%. When the sequencing batch reactor (SBR) was operated during 30 days, removal efficiencies of TOC and phosphate was 95% and 70ft, respectively. From this research, repeated cycle of anaerobic and aerobic conditions is required to enhance the removal of TOC and phosphate. During the operation, immobilized cells could be used without being disrupted.

IMPROVEMENT OF ANAEROBIC DIGESTION RATE OF BIOSOLIDS IN WASTE ACTIVATED SLUDGE(WAS) BY ULTRASONIC PRETREATMENT

  • Oh, Sae-Eun
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.143-148
    • /
    • 2006
  • The ultrasonics is a new technology in waste activated sludge(WAS) treatment. Ultrasonic treatment is well known method for the break up of microbial cells to extract out a variety of intercellular materials inside microorganism cell. This study was done to investigate the effects of the ultrasonic frequency and power on disruption of biosolids in WAS and to examine the effect on methane production of WAS treated by ultrasonics. Biosolids disruption with ultrasound is more effective at ultrasonic frequency of 40 kHz and power of 0.3 watt/mL. In the digestion with WAS pretreated by sonication time for 10 minute at 40 kHz and 0.3 watt/mL, the total quantity of generated methane increased by 75%, as compared with experimental control(non-treatment).

The Effect of Organic Loading and Seeding Rate to Biodegradibility of Food Waste (음식물쓰레기의 유기물 부하 및 식종율 변화가 생분해도에 미치는 영향)

  • 박남배;정용현;양병수
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.25-31
    • /
    • 1999
  • Energy recovery technology from municipal solid waste has been increasingly established in many countries. Anaerobic treatment of municipal sewage sludge has low digestion efficiency because of low organic loading rate of sewage sludge. The purpose of this study was to evaluate anaerobic biodegradability of food waste which was based on organic loading rate and seeding rate. From the results of anaerbic biodegration, the optimum condition for seeding rate was turn out over 40%, which did not inhibition of methane production.

  • PDF

Hydrogen and Methane Production from Mixture of Food Wastewater and Swine Wastewater using Two-Phase Anaerobic Process (이상 혐기성 공정을 이용한 음식물류폐기물폐수와 양돈폐수의 혼합액으로부터 수소 및 메탄 생산)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.299-306
    • /
    • 2008
  • This study has been conducted to derive the bio-energy, hydrogen and methane production, from mixture of food wastewater and swine wastewater, the high strength organic wastewater and to increase effluent quality. To overcome this limitation in one-phase anaerobic process, two-phase anaerobic process combining hydrogen fermenter and methane fermenter was applied. In this system $2,323ml\;H_2/L$ was produced daily from Run II where 500 ml of heattreated sludge in methane fermenter was injected, and methane produced from methane fermenter did not show big difference regardless of the amount of returning sludge at each Run. It was concluded that the two-phase anaerobic process was the appropriat process to produce hydrogen and methane simultaneously and stably. Influent $TCOD_{Cr}$ to two-phase anaerobic process showed the range of 132~145 g/L(average 140 g/L), and effluent $TCOD_{Cr}$ range was 25~40 g/L(average 32 g/L), and organic removal efficiency showed 71~82%(average 76.3%).

Biological Phosphorus and Nitrogen Removal in Anaerobic-Aerobic Activated Sludge Process (활성오니를 이용한 인 및 질소의 생물학적 제거)

  • CHOI Seung-Tae;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.690-695
    • /
    • 1994
  • Simultaneous removal of phosphorus and nitrogen from wastewater was studied by the anaerobic-aerobic system of activated sludge. In the anaerobic stage, most of the influent glucose was removed and orthophosphate was released, when the nitrate and/or nitrite concentration in the wastewater was almost zero. The amount of the released phosphorus was found to be directly proportional to the amount of the removed glucose. When the ratio of phosphorus to glucose in the influent was less than 0.04, the phosphorus in the wastewater was almost completely removed during the aerobic state. Under the anaerobic condition, activated sludge released phosphate and excess removal of phosphate occurred during the aerobic condition. Namely, the stress received in anaerobic period stimulated the uptake of phosphorus in aerobic period. The amounts of phosphorus release in the anaerobic and uptake in the aerobic stage were less in proportional to the concentration of $NO_x-N$. Further, if the initial ratio of $NO_2-N$/glucose was less than 0.37, the inorganic nitrogen in the influent could be completely removed.

  • PDF

Improvement of Solubilization and Anaerobic Biodegradability for Sewage Sludge Using Ultrasonic Pre-treatment (하수슬러지의 초음파 전처리를 통한 가용화 및 혐기성 생분해도 향상)

  • Lee, Chae-Young;Park, Seung-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.83-90
    • /
    • 2008
  • The ultrasonic pre-treatment of sewage sludge (SS) was investigated to increase soluble organic material and to improve anaerobic biodegradability. Ultrasonic disintegration of SS increased the amount of soluble chemical oxygen demand (SCOD), protein and carbohydrate concentrations whereas particle size decreased due to the break-up of cell walls. In terms of anaerobic biodegradability, ultrasonic pre-treatment enhanced the anaerobic biodegradation of SS, leading to the methane gas production improvement. Biochemical methane potential (BMP) of SS was 211.3 ml $CH_4/gVS$ whereas BMP after ultrasonic pre-treatment was 294.3 ml $CH_4/gVS$. The improvement in BMP for SS treated with ultrasonic disintegration was as high as 40 %. This result indicated that disintegration of SS was efficient for enhancing anaerobic biodegradability.

  • PDF

Improvement of Organic Substances Indicators by Linked Ultra Violet-Advanced Oxidation Process After Ozonation for Anaerobic Digested Wastewater (소화탈리액 대상 오존 전처리와 Ultra Violet-Advanced Oxidation Process 연계 처리를 통한 유기물질 지표 개선)

  • Jaiyeop Lee;Jesmin Akter;Ilho Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.253-259
    • /
    • 2023
  • Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.

Investigation of Microbial Communities in the Anammox Reactor Seeded with Sewage Sludge and Anaerobic Granule (하수 슬러지와 혐기성 입상슬러지를 식종한 혐기성 암모니아 산화 반응기의 미생물 탐색)

  • Park, Kyung-Soon;Bae, Hyokwan;Chung, Yun-Chul;Park, Yong Keun;Jung, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.397-402
    • /
    • 2007
  • Anammox reactor seeded with sewage sludge from RBC reactor and anaerobic granule from full-scale UASB reactor treating distillery wastewater was operated. Mixed granule and suspended sludge in the ammonium oxidizing process were taken and analyzed to investigate microbial community structure by molecular methods such as gene cloning and phylogenetic tree analysis after 250 days of continuous cultivation. The average nitrogen removal rate showed $0.9kg\;N/m^3-day$ after 250 days of continuous operation, then the maximum nitrogen removal rate showd $1.9kg\;N/m^3-day$ when $2.1kg\;N/m^3-day$ of nitrogen loading rate was applied. As results of gene cloning and phylogenetic tree analysis, Three kinds of phylum were found to be Proteobacteria, Acidobacteria and Planctomycetes (anammox bacteria) in mixed granule. Five kinds of phylum were found to be Proteobacteria, Chlorobi, Planctomycetes, Nitrospirae and Verrucomicrobia in suspended sludge. We found planctomycete KSU-1 and putative new anammox bacteria in the reactor. Microbial structure represented different consortia depending on the types of sludge in the anammox reactor.