• Title/Summary/Keyword: Anaerobic $H_2$ fermentation

Search Result 128, Processing Time 0.031 seconds

석탄 합성가스로부터 효율적인 생물학적 수소 생산에 관한 연구

  • 강환구;전희진
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.268-273
    • /
    • 2000
  • A microbiological hydrogen production process was optimized. Anaerobic photosynthetic bacteria like Rhodospirillum rubrum which is known to produce hydrogen from carbon monoxide efficiently and remove sulfur was used. To evaluate the potenital of this microorganism the optimization of media fermentation condition light intensity and light requirement for CO conversionwas tried in batch cultures and the continuous fermenter was also applied for this process. The gas residence time on CO conversion was sought out to get high conversion of carbon monoxide to hydrogen. Through this study the possibility of microbial synthtics gas concersion process was proposed.

  • PDF

Effect of Mixed Microbes Addition on Chemical Change and Silage Storage of Spent Mushroom Substrates (복합생균제 첨가가 버섯부산물의 화학적 성분 변화와 발효 저장성에 미치는 영향)

  • Kim, Young-Il;Seok, Joon-Sang;Kwak, Wan-Sup
    • Journal of Animal Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.831-838
    • /
    • 2008
  • This study was conducted to evaluate effects of mixed microbes addition on physico-chemical, fermentative and microbial parameters of sawdust-based spent mushroom substrates(SMS). The SMS was inoculated with mixed microbes(Enterobacter ludwigii, Bacillus cereus, 2 strains of Bacillus subtillis, Saccharomyces cerevisiae and Lactobacillus plantarum) at 1% level(wet basis) and anaerobically fermented during the different periods(up to 8th week). Compared with the SMS before ensiling, the ensiled one had higher CP, NDF and ADF percentages and lower DM and NFC percentages. However, levels of change were very low. The in situ ruminal disappearance of SMS DM and NDF decreased with the ensiling period prolonged. For fermentative parameters, pH reduced and lactic acid contents increased after ensiling, compared with those after ensiling. At 8th week of ensiling, pH increased and lactic acid contents reduced again, compared with those at 4th week of ensiling; however, the silage still showed favorable fermentation status. Lactic acid bacteria counts did not change throughout 8 weeks of ensiling. Counts of total microbes and yeast reduced after 4th week of ensiling period. Counts of lactic acid bacteria and yeast at 8th week of ensiling were in the levels of 108cfu/g. These results indicate that anaerobic fermentation with microbial addition could be an effective way for the long term(8 weeks) storage of the SMS.

Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers (반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향)

  • Park, Joong-Kook;Jeong, Chan-Sung;Park, Do-Yeun;Kim, Hyun-Cheol;Lee, Seung-Cheol;Kim, Chang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • This experiment was conducted to observe the effects of anaerobic cellulolytic bacteria culture (Ruminococcus flavefaciens H-20 and Fibrobactor succinogenes H-23) on in vivo ruminal fermentation characteristics in Hanwoo heifers. Four ruminally cannulated Hanwoo heifers ($221\pm7.5kg$) receiving a basal diet containing 3 kg of mixture hay (tall fescue and ochardgrass) and 2 kg of concentrate per day were in a $4\times4$ Latin square with 21-day periods. Treatments were the basal diet without the culture additive (control), the basal diet plus 50 ml/day of bacteria culture of H-20 and H-23 (1%), 150 ml/day of H-20 and H-23 (3%), and 250 ml/day of H-20 and H-23 (5%). In the whole experimental periods, ruminal pH did not differ between treatments. However, the concentration of ruminal ammonia-N was increased in the 3% treatment relative to control and the 1% treatment at 1 hr post-feeding (p<0.05). Avicelase and CMCase (carboxymethyl cellulase) activities in rumen fluid showed no significant difference among treatments. However, xylanase activity was higher in the 5% (119.49, xylose ${\mu}mol$/ml/min) than the 3% treatment (71.02, xylose ${\mu}mol$/ml/min) at 0 hr post-feeding (p<0.05). Concentrations of ruminal total VFA, acetate, propionate and valerate were unaffected by treatments, while butyrate was higher in the 3% treatment (24.48 mM) than control (15.71 mM) at 1 hr post-feeding (p<0.05). Results indicate that minimum 3% inclusion of cellulolytic bacteria cultures improved ruminal fermentation, especially ammonia-N concentration and butyric acid production.

Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater (두부 폐수를 이용한 수소생산 및 미생물의 군집 변화)

  • Jun, Yoon-Sun;Joe, Yoon-A;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, characteristics of biological hydrogen production and microbial distribution were investigated with the wastewater of Tofu manufacturing process. Comparison of hydrogen production was conducted with acid or base pre-treatment of the wastewater. Maximum hydrogen production was acquired with combination of heat and acid treatment. Hydrogen production ($P_h$) and maximum hydrogen production rate ($R_h$) was calculated 661.01 mL and 12.21 mL/g dry wt biomass/hr from the modified Gompartz equation. Most of microbial community was analyzed as Streptococcus sp. from PCR-DGGE experiment of 16S rDNA. It was concluded that most significant microorganism for hydrogen production was Streptococcus gallolyticus sub sp. in this experiment.

Development of Fermented Beverage Using the Sea Tangle Extract, and Quality Characteristics Thereof (다시마추출액을 이용한 발효음료개발 및 품질특성)

  • Kim, Mi-Lim;Choi, Mi-Ae;Jeong, Ji-Suk
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.21-29
    • /
    • 2008
  • This study investigated the fermentation and quality characteristics of a fermented beverage, prepared by semi-anaerobic culture, using sea tangle extract. A central composit design using alcohol(0, 0.5, 1.0, 1.5, 2.0% [all v/v] ), sugar(0, 5, 10, 15, 20% [all w/v] ) and $65^{\circ}Brix$ citrus juice(0, 1.0, 2.0, 3.0, 4.0 % [all v/v] ) was used to find the optimal mix for fermentation. Sensory characteristics, such as color, flavor, taste, sweetness, saltiness, sourness and overall quality, were measured using a response surface methodology computer program. The optimal conditions that produced the highest acidity of 0.94 were 2.0 % ethanol, 10.17 % sucrose and 1.99 % citrus juice. The optimal conditions that produced gel 20.13 nun in thickness were 1.98% alcohol, 10.94% sucrose and 1.62% citrus juice. The overall optimal conditions that satisfied all the sensory requirements for a sea tangle beverage were 1.0% alcohol, 10.0% sucrose and 4.05% citrus juice.

Biogas Production from Anaerobic Co-digestion Using the Swine Manure and Organic Byproduct (돈분과 유기성 부산물을 혼합한 혐기소화에서 바이오가스 생산)

  • Kim, W.G.;Oh, I.H.;Yang, S.Y.;Lee, K.M.;Lee, S.I.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Animal manure is produced annually 43.7 million tonnes in Korea. Among them, about 85.6 % are used as compost or liquid fertilizer to the agricultural land. The animal manure can be effectively utilized by mixing with organic byproducts that result in generation of biogas from anaerobic co-digestion process. This study aimed to optimize the content of total solid materials (TS) and determine the effect of organic byproduct on the co-digestion process. Prior to the byproduct treatments, determination of proper content of TS was conducted by controlling at 5 or 10 %. For the byproduct treatments, swine manure without adding the byproduct was used for control treatment, and swine manure mixed with either corn silage or kitchen waste was used for other treatments. Volume of biomethane ($CH_4$) generated from digested materials was quantified before and after byproduct treatments. In result, a 1.4-fold higher biomethane, about 0.556 L/$L{\cdot}d$, was produced when the content of TS was controlled at 10 %, compared at 5 %, about 0.389 L/$L{\cdot}d$. When the swine manure was mixed with the corn silage or kitchen waste, a two-fold higher biomethane was produced, about 1.theand 1.0heL/$L{\cdot}d$, respectively, compared to the control treatment. Biogas production from organic dry matter (odm) was a3, 362eand 2h6 L/kg odm${\cdot}$d for control, corn silage, and kitchen waste treatment, respectively. The lower biogas production in the treatment of kitchen waste than that of corn silage is associated with its relatively high odm contents. The methane concentration during the whole process ranged from 40 at the beginning to 70 % at the end of process for both the control and kitchen waste treatments, and ranged from 52 to 70 % for the corn silage treatment. Hydrogen sulfide ($H_2S$) concentration ranged between 350 and 500 ppm. All the integrated results indicate that addition of organic byproduct into animal manure can double the generation of biogas from anaerobic fermentation process.

Optimal Treatment of Molasses Wastewater Using UASB Process (UASB 공정에 의한 당밀폐수의 최적처리 방안)

  • Huh, Kwan-Yong;Jeong, Eui-Geun;Chung, Yoon-Jin;Yoo, Sang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.112-127
    • /
    • 1997
  • The purpose of this study is to get optimum operating factors of Upflow Anaerobic Sludge Blanket (UASB) reactor by introducing methods that make it to reduce inhibition possible in each process wastewater treatment. The used substrates, concentrated corn starch liquid (CSL) wastewater, modified starch, filtering and decoloring wastewater, ion refining wastewater, and mixed wastewater including modified starch and not including modified starch, are generated from molasses process. The seeding sludge is the digested sludge that had been applied to molasses wastewater. Batch test to reduce the inhibition factors that might be existed in each wastewater was examined. Based on the this test, the optimum operating factors according to alkalinity and pH variation was studied through the continuous test using three 5.5 L UASB reactor. The first reactor added $NaHCO_3$ to control alkalinity. The hydraulic retention time (HRT) reduced to 8 hours and the organic loading rate increased gradually. The second reactor changed the pH of influent from 7.0 to 6.0 using NaOH. The third reactor was operated without changes to compare the above two reactors. As the result, the inhibition in concentrated CSL wastewater was removed by adding iron (II). When trace metals were added to mixed wastewater not including modified starch, the digestability by gas production rate increased to more fifty percentage than mixed wastewater that was not adding the trace metals. The reason that the inhibition did not decreased in spite of adding trace metals and nutrients was influenced by high concentration generated during the acid fermentation. The UASB reactors using the mixed wastewater with the most effective performance were operated as 500 mg/L as $CaCO_3$ alkalinity and 6.0 pH at steady state, and at this time, the gas production rates were 283 and 311mL gas/g $COD_{added}$. The COD removal rates were 84.7 and 86.3%, respectively.

  • PDF

Effect of Different Liquid Manure Anaerobic Digestates on the Growth and Yield of Rice and the Optimum Application Concentration (혐기소화발효액비의 벼 생육 및 수량에 미치는 영향과 적정 시용량)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Ryoo, Jong-Won;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.97-104
    • /
    • 2021
  • This research examined the effects of different liquid manure based anaerobic digestate on the growth and yield of rice compared to chemical fertilizer. The liquid manure was produced by aerobic fermentation from swine with cow or apple pomace anaerobic digestate and treated at different concentrations. The number of grains per panicle increased in both the liquid manure-treated and chemical fertilizer treated rice. The yield index did not vary significantly between the liquid manure and chemical fertilizer. An increased concentration of liquid manure did not correlate with increases in unhulled rice. However, pH and exchangeable K in the soil increased with an increase in liquid manure. In summary, we suggest a properly applied 100% liquid manure fertilizer can replace chemical fertilizer to reduce our excessive use of inorganic fertilizer.

Screening and Characterization of Potential Bacillus Starter Cultures for Fermenting Low-Salt Soybean Paste (Doenjang)

  • Jeon, Hye Hee;Jung, Ji Young;Chun, Byung-Hee;Kim, Myoung-Dong;Baek, Seong Yeol;Moon, Ji Young;Yeo, Soo-Hwan;Jeon, Che Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.666-674
    • /
    • 2016
  • The bacterial strains were screened as potential starters for fermenting low-salt doenjang (a Korean traditional fermented soybean paste) using Korean doenjang based on proteolytic and antipathogenic activities under 6.5-7.5% NaCl conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that they all belonged to the genus Bacillus. Proteolytic and antipathogenic activities against Escherichia coli, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Aspergillus flavus, as well as fibrinolytic, amylase, and cellulase activities of the 10 strains were quantitatively evaluated. Of these, strains D2-2, JJ-D34, and D12-5 were selected, based on their activities. The functional, phenotypic, and safety-related characteristics of these three strains were additionally investigated and strains D2-2 and D12-5, which lacked antibiotic resistance, were finally selected. Strains D2-2 and D12-5 produced poly-γ-glutamic acid and showed various enzyme activities, including α-glucosidase and β-glucosidase. Growth properties of strains D2-2 and D12-5 included wide temperature and pH ranges, growth in up to 16% NaCl, and weak anaerobic growth, suggesting that they facilitate low-salt doenjang fermentation. Strains D2-2 and D12-5 were not hemolytic, carried no toxin genes, and did not produce biogenic amines. These results suggest that strains D2-2 and D12-5 can serve as appropriate starter cultures for fermenting low-salt doenjang with high quality and safety.

Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge (음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석)

  • Kim, Dong-Kun;Lee, Yun-Jie;Kim, Dong-Im;Kim, Ji-Seong;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.438-442
    • /
    • 2005
  • Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.