• 제목/요약/키워드: Amplify-and-forward relay

검색결과 135건 처리시간 0.02초

Opportunistic Multiple Relay Selection for Two-Way Relay Networks with Outdated Channel State Information

  • Lou, Sijia;Yang, Longxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.389-405
    • /
    • 2014
  • Outdated Channel State Information (CSI) was proved to have negative effect on performance in two-way relay networks. The diversity order of widely used opportunistic relay selection (ORS) was degraded to unity in networks with outdated CSI. This paper proposed a multiple relay selection scheme for amplify-and-forward (AF) based two-way relay networks (TWRN) with outdated CSI. In this scheme, two sources exchange information through more than one relays. We firstly select N best relays out of all candidate relays with respect to signal-noise ratio (SNR). Then, the ratios of the SNRs on the rest of the candidate relays to that of the Nth highest SNR are tested against a normalized threshold ${\mu}{\in}[0,1]$, and only those relays passing this test are selected in addition to the N best relays. Expressions of outage probability, average bit error rate (BER) and ergodic channel capacity were obtained in closed-form for the proposed scheme. Numerical results and Simulations verified our theoretical analyses, and showed that the proposed scheme had significant gains comparing with conventional ORS.

Exact Performance Analysis of AF Based Hybrid Satellite-Terrestrial Relay Network with Co-Channel Interference

  • Javed, Umer;He, Di;Liu, Peilin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3412-3431
    • /
    • 2015
  • This paper considers the effect of co-channel interference on hybrid satellite-terrestrial relay network. In particular, we investigate the problem of amplify-and-forward (AF) relaying in hybrid satellite-terrestrial link, where the relay is interfered by multiple co-channel interferers. The direct link between satellite and terrestrial destination is not available due to masking by surroundings. The destination node can only receive signals from satellite with the assistance of a relay node situated at ground. The satellite-relay link is assumed to follow the shadowed Rice fading, while the channels of interferer-relay and relay-destination links experience Nakagami-m fading. For the considered AF relaying scheme, we first derive the analytical expression for the moment generating function (MGF) of the output signal-to-interference-plus-noise ratio (SINR). Then, we use the obtained MGF to derive the average symbol error rate (SER) of the considered scenario for M-ary phase shift keying (M-PSK) constellation under these generalized fading channels.

Design and Optimization for Distributed Compress-and-Forward System based on Multi-Relay Network

  • Bao, Junwei;Xu, Dazhuan;Luo, Hao;Zhang, Ruidan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2949-2963
    • /
    • 2019
  • A novel distributed compress-and-forward (CF) system based on multi-relay network is presented. In this system, as the direct link between the source and destination is invalid due to some reasons, such as the limited power, special working environment, or even economic factors, relays are employed to receive analog signals and carry on distributed compressed encoding. Subsequently, the digital signals are transmitted to the destination via wireless channel. Moreover, a theoretical analysis for the system is provided by utilizing the Chief Executive Officer (CEO) theory and Shannon channel capacity theory, and the rate-distortion function as well as the connection between the transmission rate and the channel capacity are constructed. In addition, an optimal signal-to-noise ratio (SNR) -based power allocation method is proposed to maximize the quantization SNR under the limited total power. Simulation result shows that the proposed CF system outperforms the amplify-and-forward (AF) system versus the SNR performance.

Switch-and-Stay Combining 기반 Mixed RF/FSO Dual-hop 전송 시스템 성능 분석 (Performance Analysis of Mixed RF/FSO Dual-hop Transmission with Switch-and-Stay Combining)

  • 황규성
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.493-498
    • /
    • 2018
  • In this paper, we provide the performance analyses of a dual-hop amplify-and-forward(AF) relay transmission composed of asymmetric radio-frequence(RF) and free-space optical(FSO) links. In the mixed RF/FSO system, a relay is equipped with two receive antennas for RF signals and one additional transmit antenna for FSO signals. In order to improve a performance of RF link, a switch-and-stay (SSC) diversity technique is applied at the relay which can provide a proper link performance with a low complexity. Specifically, we offer the performance analyses of the proposed system in terms of outage probability and secrecy outage probability. In numerical examples, we compare the system performances with no diversity and selection combining systems and verify our analytical results via computer-based Monte-Carlo simulations.

Performance Comparison of Orthogonal and Non-orthogonal AF Protocols in Cooperative Relay Systems

  • Bae, Young-Taek;Jung, Sung-Kyu;Lee, Jung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1026-1040
    • /
    • 2012
  • For a single relay channel, we compare the capacity of two different amplify-and-forward (AF) protocols, which are orthogonal AF (OAF) and non-orthogonal AF (NAF). The NAF protocol has been proposed to overcome a significant loss of performance of OAF in the high spectral efficiency region, and it was also theoretically proved that NAF performs better than OAF in terms of the diversity-multiplexing tradeoff. However, existing results have been evaluated at the asymptotically high signal to noise ratio (SNR), thus the power allocation problem between the source and the relay was neglected. We examine which protocol has better performance in a practical system operating at a finite SNR. We also study where a relay should be located if we consider the power allocation problem. A notable conclusion is that the capacity performance depends on both SNR and power allocation ratio, which indicates OAF may perform better than NAF in a certain environment.

Capacity Analysis of an AF Relay Cooperative NOMA System Using MRC

  • Xie, Xianbin;Bi, Yan;Nie, Xi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4231-4245
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) is widely studied in both academia and industry due to its high spectral efficiency over orthogonal multiple access (OMA). To effectively improve spectrum efficiency, an amplify-and-forward (AF) cooperative NOMA system is proposed as well as a novel detection scheme is proposed, in which we first perform successive interference cancellation (SIC) twice at U1 for the two signals received from two time slots to remove interference from symbol 2, then two new signals apply max ratio combining (MRC). In addition, a closed-form upper bound approximation for the ergodic capacity of our proposed system is derived. Monte-Carlo simulations and numerical analysis illustrate that our proposed system has better ergodic capacity performance than the conventional cooperative NOMA system with decode-forward (DF) relay, the conventional cooperative NOMA system with AF relay and the proposed AF cooperative NOMA system in [16]. In addition, we can see that ergodic capacity of all NOMA cooperative systems increase with the increase of transmit SNR. Finally, simulations display that power allocation coefficients have little effect on ergodic capacity of all NOMA cooperative systems. This is due to this fact that ergodic capacity of two symbols can be complementary with changing of power allocation coefficients.

LTE-Advanced 시스템의 다중 사용자 MIMO Relay 네트워크에서 간섭 제거를 위한 Joint Precoding 기술 (Joint Precoding Technique for Interference Cancellation in Multiuser MIMO Relay Networks for LTE-Advanced System)

  • 사란쉬 말리크;문상미;김보라;김철성;황인태
    • 대한전자공학회논문지TC
    • /
    • 제49권6호
    • /
    • pp.15-26
    • /
    • 2012
  • 본 논문에서는 개선된 AF(Amplify-and-Forward)와 DF(Decode-and-Forward) Relay 프로토콜을 결합한 다중 사용자 MIMO (Multiple Input Multiple Output) Relay 네트워크에서 간섭 제거 기술을 논의 한다. 간섭 제거 기술은 Relay 노드가 적용된 전체 전송 시스템의 오류 성능을 향상시키기 위해 eNB(evolved NodeB), Relay 노드(RN: Relay Node)와 UE(User Equipment)에 의해 이루어진다. 간섭 제거를 수행하기 위해 ZF(Zero Forcing), MMSE(Minimum Mean Square Error), SIC(Successive Interference Cancellation)와 OSIC(Ordered Successive Interference Cancellation)가 적용된 DPC(Dirty Paper Coding)와 THP(Thomilson Harashima Precoding)를 사용하였다. 이러한 기본적인 기술이 적용된 Relay 노드 기능들이 연구되고 개선된다. 협력 Relay 노드에서 두 계층 간의 간섭 제거를 강화한 DF는 성능을 향상시킨다. eNB와 RN간의 가중치 벡터를 사용하여 간섭 제거가 수행된다. 연구 최종 결과, 기존의 알고리즘과 비교하여 제안된 알고리즘이 낮은 SNR에서 더 좋은 성능을 나타냈다. 모의실험 결과 LTE-Advanced 시스템에서 제안된 기법이 오류 성능 면에서 상당한 향상을 나타냈다.

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.

Power Allocation for OFDM-Based Cooperative Relay Systems

  • Wu, Victor K. Y.;Li, Ye (Geoffrey);Wylie-Green, Marilynn P.;Reid, Tony;Wang, Peter S. S.
    • Journal of Communications and Networks
    • /
    • 제10권2호
    • /
    • pp.156-162
    • /
    • 2008
  • Cooperative relays can provide spatial diversity and improve performance of wireless communications. In this paper, we study subcarrier power allocation at the relays for orthogonal frequency division multiplexing (OFDM)-based wireless systems. For cooperative relay with amplify-and-forward (AF) and decode-and-forward (DF) algorithms, we investigate the impact of power allocation to the mutual information between the source and destination. From our simulation results on word~error-rate (WER) performance, we find that the DF algorithm with power allocation provides better performance than that of AF algorithm in a single path relay network because the former is able to eliminate channel noise at each relay. For the multiple path relay network, however, the network structure is already resistant to noise and channel distortion, and AF approach is a more attractive choice due to its lower complexity.

레일리페이딩 환경에서 복호 후 재전송방식을 위한 부분적 릴레이 선택방식 연구 (Partial Relay Selection for Decode and Forward over Rayleigh Fading Channels)

  • 보 뉘엔 �o 바오;공형윤
    • 한국통신학회논문지
    • /
    • 제34권7A호
    • /
    • pp.523-529
    • /
    • 2009
  • This paper provides closed form expressions for the evaluation of the end-to-end outage probability, symbol error rate, bit error rate and average capacity of the partial-based Decode-and-Forward (DF) relay selection scheme with an arbitrary number of relays. In a comparison with the performance of systems that exploit Amplify-and-Forward (AF), it can be seen that the performance of our proposed protocol converges to that of partial-based AF relay selection in high SNR regime. We also perform Monte-Carlo simulations to validate the analysis.