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Abstract 
 

A novel distributed compress-and-forward (CF) system based on multi-relay network is 
presented. In this system, as the direct link between the source and destination is invalid due to 
some reasons, such as the limited power, special working environment, or even economic 
factors, relays are employed to receive analog signals and carry on distributed compressed 
encoding. Subsequently, the digital signals are transmitted to the destination via wireless 
channel. Moreover, a theoretical analysis for the system is provided by utilizing the Chief 
Executive Officer (CEO) theory and Shannon channel capacity theory, and the rate-distortion 
function as well as the connection between the transmission rate and the channel capacity are 
constructed. In addition, an optimal signal-to-noise ratio (SNR) -based power allocation 
method is proposed to maximize the quantization SNR under the limited total power. 
Simulation result shows that the proposed CF system outperforms the amplify-and-forward 
(AF) system versus the SNR performance.  
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1. Introduction 

In recent years, wireless relay technology has attracted much attention in wireless 
communications, for it can combat channel fading, promote spectrum utilization and enhance 
wireless network coverage in the case of bad direct link. Now, it is widely used in various 
wireless communication systems, such as satellite communication systems, mobile 
communication systems, etc. 

Numerous researches have been addressed for different kinds of wireless relay technology, 
such as amplify-and-forward (AF), decode-and-forward (DF) and compress-and-forward (CF). 
For AF system, the relays are utilized to amplify and forward signal, whereas the noise is also 
amplified[1]-[5]. For DF system, the relays firstly demodulate and decode the received signal, 
and then re-encode and transmit it to the destination. However, it will cause error propagation 
if a decoding error occurs[6]-[8]. For CF system, the compressed signals from relay nodes are 
jointly decoded at the destination with the direct signal from the source. That is, an extra direct 
channel is involved between the source and destination [9][10]. In addition, wireless relay 
technology has also been studied from other aspects, such as outage probability[11][12], relay 
selection[13]-[15], minimizing the bit error ratio (BER)[16][17] and spatial channel pairing 
strategy [18]. It should be noted that power allocation has long been playing an important role 
in wireless relay technology [3][5], [19]-[22], since a better system performance can be 
achieved by appropriately allocating limited power between the source and relays. 

In this paper, a new CF system model based on multi-relay network is presented, which is 
different from the traditional AF and CF system in two aspects. Firstly, the proposed CF 
system consists of two parts. One part is the analog sensor network from the source to the 
relays, which generates and transmits analog signals. The other part is the digital 
communication network from the relays to the destination, which transmits digital signals to 
the destination. Specifically, the source can only yield analog signals and the destination can 
only receive digital signals, where no direct link exists between the source and destination. As 
a result, the relays are utilized to transform analog signals into digital signals and forward them. 
Furthermore, quantization SNR criterion is superior to BER criterion to assess the 
performance of the CF system. It is due to that the exactly recovered digital signals at 
destination are sampled from the original analog signals, some information will be dropped 
during sampling and compressing process and the generated distortion is similar to the noise 
that disturbs analog signals over noisy channel. In addition, an optimized method, which 
allocates the power among the source and relays under sum SNR constraint, is proposed to 
maximize quantization SNR at the destination. The proposed CF model suits to various fields, 
such as industrial monitoring, sewage treatment, home life and so on. The system is different 
from multi-input multi-output (MIMO) system [23], for it is based on the technology of 
multi-relay rather than multi-antenna. Meanwhile, the main idea of this paper is to provide a 
new theoretical framework, and many details of technology are not touched. 

The rest of the paper is organized as follows. Section 2 provides the models of traditional 
AF system and the proposed CF system. In section 3, theoretical analysis about AF and CF 
systems are conducted. For CF system, theoretical analysis is based on CEO problem and then 
power allocation method is proposed to maximize the quantization SNR performance. SNR 
performance comparisons of the proposed CF system and AF system are given in Section 4. 
Section 5 concludes this paper. 
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2. System Model 

2.1 Model of AF system 
Fig. 1 presents the model of traditional AF system. The source node S transmits analog signals 

( )X t  to L relays ( 1,2, , )iR i L= ⋅⋅⋅  and no direct link exists between source S and destination D. 
Assume that ( )X t  follows Gaussian distribution 2(0, )xN σ , and the channels between source 
and relays as well as relays and destination are all additive white Gaussian noise (AWGN) 
channels. The corrupted analog signals ( )riY t  received at each relay iR  can be represented as 

 
Fig. 1. Model of AF system 

 

( ) ( ) ( ), ( 1, 2, , )ri riY t X t N t i L= + = ⋅⋅⋅                                     (1) 

where ( )riN t  is independently and identically distributed (i.i.d.) Gaussian random noise with 

zero mean and variance 2
iσ , the power of the received signal ( )riY t  is 2

xσ  for channel fading is 
not taken into account. SNR riγ  of signal ( )riY t  in the ith relay is 

2

2 , ( 1, 2, , )x
ri

i

σγ i L
σ

= = ⋅⋅⋅                                              (2) 

Then the signal ( )riY t  is amplified in relay iR  and forwarded to destination D with power 

riP , where 
2 2 2( ), ( 1, 2, , )ri x iP β σ σ i L= + = ⋅⋅⋅                                      (3) 

β  is magnification factor of power. If the channel fading of relay-to-destination link is not 
considered, the signal that destination received from relay iR  is 

( ) ( ) ( ), ( 1, 2, , )di ri diY t βY t N t i L= + = ⋅⋅⋅                                (4) 
where ( )diN t  is i.i.d. Gaussian random noise that follows 2(0, )iN σ . SNR of signal ( )diY t  in 
the destination is 

2 , ( 1, 2, , )ri
di
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Pγ i L
σ

= = ⋅⋅⋅                                               (5) 
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When the number of relay nodes L is more than 1, each source-relay-destination sublink is 
similar to a AF system with single one relay. Assume that the signal power riP  of each sublink 
is equal to the others, the received signal at the destination is 

[ ] ( )
1 1

1 1( ) ( ) ( ) ( ) ( ) ( )
L L

d ri di ri di
i i

Y t βY t N t β X t N t N t
L L= =

= + = + +  ∑ ∑        (6) 

and the SNR Aγ  of the signal ( )dY t  is 

( ) ( )
2 2 2 2 2 2

2 2 2 2 2 2 2 21
x x x ri

A
i i i x ri i i

L β σ Lβ σ Lσ Pγ
Lσ Lβ σ β σ σ P σ σ

= = =
+ + + +

                          (7) 

2.2 Model of the Proposed Distributed CF System 
The model of the proposed distributed CF system based on multi-relay network is depicted in 
Fig. 2. In the CF system, no direct link exists between source and destination. The source 
yields and transmits analog signals, while the destination can only receive digital signals. 
Encoder is assembled at each relay node to encode separately the corrupted analog signals, and 
subsequently the encoded digital signals are transmitted to the destination D through the 
channel with additive white Gaussian noise. The destination receives and jointly decodes the 
digital signals from all relays and yields the estimation of the original analog signals. Until 
now, the communication between source and destination is completed. 

 
Fig. 2. Model of distributed CF system 

 
We also assume that the analog signals ( )X t  transmitted from source follows the Gaussian 

distribution 2(0, )xN σ , the channels between source and relays as well as relays and destination 
are all AWGN channels, the noises in relays and destination are i.i.d. noises and follow the 
Gaussian distribution 2(0, )iN σ . Similar to the AF system mentioned above, the received 
analog signals ( )riY t  in each relay iR  and its SNR are 
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Relay iR  receives the analog signals ( )riY t  and transforms it into digital signals ( )riY t′ . 
Assume that digital signals ( )riY t′  is transmitted to the destination with power riP , neglecting 
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the channel fading of relay-to-destination link, the received digital signals ( )diY t  in the 
destination and its SNR are 

2

( ) ( ) ( ), ( 1, 2, , )

, ( 1, 2, , )

di ri di

ri
di

i

Y t Y t N t i L
Pγ i L
σ

′= + = ⋅⋅⋅

= = ⋅⋅⋅                               (9) 

3. Theoretical Analysis 

3.1 Theoretical Analysis of AF System 

Denote the sum power of signal ( )X t  and all signals ( )riY t′  by P 
2
x riσ LP P+ =                                                          (10) 

Consider that the average powers 2
iσ  of all noise are identical, we can get 

2

2 2 2
x ri

i i i

σ P PL
σ σ σ

+ =                                                       (11) 

ri di Tγ Lγ γ+ =                                                          (12) 

where 2T
i

Pγ
σ

= . Take it into (7) 
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−
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                                       (13) 

It means that Aγ  is function of riγ . When L = 1, we can get from (13) 
( )
1

ri T ri
A

T

γ γ γγ
γ
−

=
+

                                                      (14) 

Take its derivative versus riγ  as 0A

ri

dγ
dγ

= , we find that the AF system can reach maximum 

SNR max( )Aγ  when 
1
2ri Tγ γ=                                                            (15) 

When L is more than 1, we take the derivative of Aγ  with respect to riγ  and let 0A

ri

dγ
dγ

= , 

2( 1) 2( ) ( ) 0ri T ri T TL γ L γ γ γ L γ− + + − + =                                    (16) 
2( ) ( 1)( ) ( )

1
T T T T

ri

L γ γ L L γ L γ
γ

L
+ + − + − +

=
−

                              (17) 

Take (17) into (13), the maximum SNR max( )Aγ  of AF system in destination can be 
obtained.  
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3.2 Theoretical Analysis of the CF System Based on the CEO Problem 
In the proposed CF system, the received signals are compressed and encoded at each relay, and 
then forwarded to the destination. It is an analogy to the CEO problem and the source coding 
problem. 

The CEO problem is a special case of multi-terminal source coding problem which was 
presented by Toby, Zhang, and Viswanathan[24]. It describes a fact that, if a firm’s CEO is 
interested in reconstructing a data sequence that he cannot observe directly, he deploys a team 
of L agents to encode their observations with no cooperation with each other. The main aim of 
the CEO problem is to seek a trade-off between a rate and distortion when L tends to infinity, 
where the rate refers to total rate that the agents communicate with the CEO, and the distortion 
is generated from reconstructing information. It characterizes the code rate of L relays which 
can support a desired fidelity so that the source signal can be accurately recovered at the 
destination. From the perspective of the analog source and channel noise which follows the 
Gaussian distribution, the CEO problem verifies that the code rate after distributed 
compressed coding in relay nodes as well as rate-distortion region follow a certain distortion 
constraint [25]. In [26], the expression of rate-distortion function versus the quadratic 
Gaussian source is provided. It shows that, the compressed communication of analog Gaussian 
source in multi-relay network is similar to the CEO problem. Xu and Wang established a new 
extremal inequality to formulate a complete characterization for the rate region of the vector 
Gaussian CEO problem with the trace distortion constraint [27]. According to [27], the 
rate-distortion function ( )R d  of the vector Gaussian CEO problem under the constraint of 
distortion d is similar to the Berger-Tung [28][29] inner bounds ( )BTR d  

( )1

22
1

22, , 1

1
2

1
2

1 1( ) ( ) min log log
2 2
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LL x jjBT i
b b i xi i

L

x i
i

i i

σ bσR d R d
σσ b

σ b d
st

σ b i L

−−
=

−−⋅⋅⋅ =

−
−

=
−

+
= = +

−

  + ≤   

 ≥ ≥ = ⋅⋅ ⋅

∑
∑

∑                 (18) 

where ( )R d  is rate-distortion function and denotes the minimum transmission rate after the 
distributed compressed coding in each relay, ( 1,2, , )ib i L= ⋅⋅ ⋅  is optimized intermediate 
variable for getting ( )R d . From (18) and Appendix we can get 

( ) 1 1log log ( 1,2, , )
2 1 2

ri
i D

D

LγR d γ i L
γ γ L

= + = ⋅⋅⋅
+ −

                 (19) 

1
1 1 ( 1,2, , )

L

ri ri D D
i

Lγ γ γ γ γ i L
=

≥ + − = + − = ⋅⋅⋅∑                        (20) 

Where Dγ  is the quantization SNR of ( )X t  after it is encoded at the relays, and 
1

L

ri
i

γ γ
=

=∑ . 

3.3 Joint Design and Formula Optimization 
In the CF system, the connections between the relays and the destination can be regarded as 
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digital communication network. If the SNR of the received signal in the destination D is diγ , 
according to Shannon channel capacity theory, the Gaussian channel capacity iC  can be 
expressed as 

1 log(1 )
2i diC γ= +                                                    (21) 

The destination can recover the relay information without distortion when the transmission 
rate ( )iR d  of each relay is less than the channel capacity iC , that is 

1 1 1log log log(1 ) ( 1,2, , )
2 1 2 2

ri
D di

D

Lγ γ γ i L
γ γ L

+ ≤ + = ⋅⋅⋅
+ −

         (22) 

In some wireless communication systems, especially the systems powered by battery rather 
than information signal [30], the available power is typically limited. It is of significance to 
optimize the power allocation for improved reliability and extended service life. In this paper, 
the power allocation among the source and relays is conducted with limited sum SNR 
constraint. As in some multi-relay networks, especially sensor network, the amount of system 
information which needs to be transmitted in unit time is constant, and excessive SNR will 
take more power and resultantly shorten the service life. Furthermore, due to the uncertainty 
and time-varying property of the channel state or circumstance noise, the power allocation 
among source and relays has to be changed simultaneously for long service life and stable 
system performance [31]. Therefore, we can improve the system performance according to the 
result of the SNR constraint method which allocates the limited power among the source and 
relays more reasonably. 

Meanwhile, the digital signals that are decoded correctly at the destination D come from 
source analog signals, and some informations are discarded during sampling and compressing. 
It means that the system performance can be assessed by the quantization SNR Dγ . Consider 
the sum of SNR of the received analog signals ( )riY t  in each relay iR  and SNR of the received 
digital signals ( )diY t  in the destination is limited, the optimization problem to resolve a high 
quantization SNR Dγ  can be formulated as 

1 1

max :
1 1 1log log log(1 )
2 1 2 2
1

. .

1
, 0

D

ri
D di

D
L L

ri di T
i i

ri D

ri di

γ
Lγ γ γ
γ γ L

γ γ γs t
L
Lγ γ γ
γ γ

= =

 + ≤ + + −


+ =

 ≥ + −


≥

∑ ∑
                       (23) 

where Tγ  is the sum SNR constrain of the CF system, it means that the sum of SNR riγ  and 

diγ  is limited, where 1, 2, ,i L= ⋅⋅⋅ . For the state of the channels between the source and relays, 
as well as the quality of the received signal at each relay are different, riγ  is unique and the 

ratio is assumed as 1 2 1 2: : : : : :r r rL Lγ γ γ a a a⋅ ⋅ ⋅ = ⋅⋅⋅ , where 
1

1
L

i
i

a
=

=∑ . Meanwhile, the 
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system achieves optimal performance when the channel capacity is fully utilized. As a result, 
the first constraint can take the equality and the optimization problem can be reconstructed as 

[ ]2 1

2

max :

( ) 1 ( ) 0

. . 1 ( ) ( )
1

D

L
T D D T

D T T m

T
m

γ

L γ L s γ s γ L γ L s

s t γ L γ L s L γ L s a

s γ L
a


 + − − − + + − =
 ≥ + + − − + −

 ≤ ≤ +


                   (24) 

where s is a parameter and 
1

min , ( 1, 2, , )

di

i

m ii N

γs
a

a a N L
∈

+
=

= = ⋅⋅⋅
                                        (25) 

From (24) we can see that, Dγ  will increase with Tγ . 

4. Experimental Classification Results and Analysis 
In this section, we propose an iterative algorithm to allocate the corresponding SNR among 
source and relays to obtain the optimal quantization SNR Dγ . The detailed steps (see Fig. 3) 
are shown as follows:  

i.  Determine whether the interval 
1,m Ts a γ L− ∈ +   is empty. If it is empty, 

the process jumps to step iii, or turns to step 
ii. 
ii.  By resolving the derivative of Dγ  with 
respect to s, the maximum of Dγ  and the 
corresponding s, L can be obtained. 
Subsequently, determine whether { }, ,Dγ s L  
can satisfy the second and third condition of 
(24). If not, jumps to step iii; otherwise, 
saves { }, ,Dγ s L  and jumps to step iv. 

iii.  Remove the relay node mR  and 
increases ma , let 1L L= −  and then returns 
to step i. 
iv.  Outputs the optimal allocation solution 
{ }, ,Dγ s L . 

Numerical simulation results are given in 
this part to validate the effectiveness of the 
optimized distributed CF system. As each 
relay works under different conditions, it 
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Fig. 3. Flow chart of the simulation 
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will provide different SNR with the same total power. In this paper, we assume that there are 
two cases involved, one is that the SNR of the signal in each relay is equal to others, and the 
other is that the SNRs are different. To reduce the complexity, the SNR ratios among relays of 
the latter case are assumed as 1 2: : : 1: 2 : :La a a L⋅ ⋅ ⋅ = ⋅⋅⋅ . Fig. 4 depicts the comparison of 
SNR performance for the two cases. For simplicity, the coding scheme has not been take into 
account in this paper. 

 

 
Fig. 4. SNR performance comparison when SNR of each relay is equal or different to the others 

 
It is illustrated in Fig. 4 that the SNR performance of the two cases is almost the same when 

the number of relays is less than 3, while the latter one is about 1dB higher than the former one 
when the number of relay is in the range of 3 and 20. That is, the SNR performance of the 
proposed system with similar SNR allocation is superior to that of the system with different 
SNR. 

Subsequently, we give the comparison of SNR performance between the distributed CF 
system and the AF system mentioned above, where the SNR of signal in each relay is equal to 
others. Fig. 5 provides the SNR performance of the two systems with the same relay number 
and sum SNR constraint. It is obviously shown that the SNR performance of the two systems 
increase with the number of relay, where the sum SNR Tγ  is set to 10dB and 20dB. This is due 
to that, the increase of the number of relay nodes takes more transmission gain. Specifically, 
the SNR performance of the distributed CF system outperforms that of AF system. For 
example, when the number of relay is 5 and sum SNR constraint Tγ  is 20dB, the SNR 
performance of the CF system is about 6.5dB higher than that of the AF system, and it reaches 
9.5dB when the number of relay  is 15. The reason is that, the increase of the number of relay 
nodes also takes more noise, and the anti-interferece ability of CF system is more powerful 
than that of AF system. 

Fig. 6 describes the plots of SNR performance of the two systems versus sum SNR 
constraint. We can see that, the SNR performance of the two systems is improved with the 
increase of sum SNR Tγ , where the number of relay is 5 and 10. Meanwhile, the SNR 
performance of the distributed CF system outperforms that of AF system with the same 
conditions. When sum SNR Tγ  is increasing from 0dB to about 8dB, the differece of the SNR 
performances between the two systems will witness a reduction of 5dB. However, the 
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difference will increase when sum SNR Tγ  is beyond 8dB. 

 
Fig. 5. SNR performance comparison in different relay numbers 

 
It is obviously shown that, with the increase of sum SNR or the number of relay, the SNR 

performances of AF and CF sytem will be improved at different degree, and the latter one 
grows faster. On the other hand, SNR performance of the distributed CF system outperforms 
that of AF system, when the condition is the same. The main reason is that, in AF system, the 
signals are simply amplified in relays and the noises are amplified at the same time, what the 
destination received are the noise seriously disturbed signals. While in CF system, the source 
analog signals are transformed into digital signals in relays, and forwarded to destination with 
the transmission rate not bigger than channel capacity, this decrease the effection of the 
channel noise. That is to say, compared to AF system, the distributed CF system can promote 
transmission performance of system and reliability of information transmission; or in other 
words, it can decrease transmit power and extend system service life while ensuring system 
performance. 
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5. Conclusion 
In this paper, we propose a distributed CF system based on multi-relay network. Meanwhile, 
from its theoretical analysis and the CEO problem, we establish an optimization method 
aiming to attain the maximum quantization SNR at the destination by allocating the power 
among the source and relays under sum SNR constraint. Specifically, the extensive simulation 
result verifies that the performance of the CF system outperforms that of different SNR when 
SNR of each relay is equvalent to others. Furthermore, the distributed CF system outperforms 
the AF system versus system performance with the same conditions. In practical applications, 
the proposed optimization method is still of significance even though the relay has a specific 
coding scheme and rate without consideration in this paper. 

Acknowledgement 
This work was supported by the National Natural Science Foundation of China (no. 
61471192). 

Appendix 
According to (18) and base on Lagrange multipliers, the Lagrange function can be written as 

( )

( ) ( )

22
2 11
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2 2
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2 2
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2 2
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where λ  is the Lagrange multiplier, f  is a function of ( 1,2, , )ib i L= ⋅⋅ ⋅ . Take the partial 

derivative of f  versus ib  and let 0
i

df
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= , we can get 
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 When ( )R d  reaches the minimum compress rate, it will be the maximum distortion. From 
(18) 
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Take (28) into (27), we can obtain 
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When the number of relay node L is more than 1, we can get from the sum of (30) 
2

1 1d 2

L L

i i
i i

Lb σ
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−

= =

= +
+∑ ∑                                                 (32) 

Take (32) into (28) 
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According to (33), we can obtain 
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                                              (34) 

Take (34) into (31), 
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                                             (35) 

then we take (35) into (18) and combine with (28), the rate-distortion function can be obtained 
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                           (36) 

The transmission rate of each relay iR  is represented by 
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Take 
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Where Dγ  is the quantization SNR of ( )X t  after it is encoded at the relays, and 
1

L

ri
i

γ γ
=

=∑ . 

In addition, combine (35) with (18), we can get 
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