• Title/Summary/Keyword: Amplify-and-forward relay

Search Result 135, Processing Time 0.033 seconds

On Performance Evaluation of Hybrid Decode-Amplify-Forward Relaying Protocol with Partial Relay Selection in Underlay Cognitive Networks

  • Duy, Tran Trung;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.502-511
    • /
    • 2014
  • In this paper, we evaluate performance of a hybrid decode-amplify-forward relaying protocol in underlay cognitive radio. In the proposed protocol, a secondary relay which is chosen by partial relay selection method helps a transmission between a secondary source and a secondary destination. In particular, if the chosen relay decodes the secondary source's signal successfully, it will forward the decoded signal to the secondary destination. Otherwise, it will amplify the signal received from the secondary source and will forward the amplified signal to the secondary destination. We evaluate the performance of our scheme via theory and simulation. Results show that the proposed protocol outperforms the amplify-and-forward and decode-and-forward protocols in terms of outage probability.

Average SER Performance Analysis for Opportunistic Amplify-and-Forward Relay Systems (OAF 시스템의 정확한 심볼 오류 성능 분석)

  • Nam, Sang-Ho;Ko, Kyun-Byoung;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents a method for obtaining an exact average symbol error rate (ASER) of M-ary Phase Shift Keying (MPSK) for opportunistic amplify-and-forward (OAF) relay systems over Rayleigh fading channels. This is based on the relay selection probability when a relay is selected as the best one with respect to the received signal-to-noise ratio. We then derive the modified moment generating function (MGF) for OAF relay systems by taking the given relay selection probability into consideration. Based on the modified MGF, we derive the exact ASER which accurately explicates OAF relay system characteristics. Our results confirm that the derived ASER provides a tight upper bound for OAF relay systems.

Exact and Approximate Symbol Error Probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels

  • Halima, Nadhir Ben;Boujemaa, Hatem
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.81-108
    • /
    • 2018
  • In this paper, we derive the theoretical Symbol Error Probability (SEP) of cooperative systems with best relay selection for Nakagami-m fading channels. For Amplify and Forward (AF) relaying, the selected relay offers the best instantaneous Signal to Noise Ratio (SNR) of the relaying link (source-relay-destination). In cooperative networks using Decode and Forward (DF), the selected relay offers the best instantaneous SNR of the link between the relay and the destination among the relays that have correctly decoded the transmitted information by the source. In the second part of the paper, we derive the SEP when all participating AF and DF relaying is performed. In the last part of the paper, we extend our results to cognitive radio networks where there is interference constraints : only relays that generate interference to primary receiver lower than a predefined threshold T can transmit. Both AF and DF relaying with and without relay selection are considered.

Active Transmission Scheme to Achieve Maximum Throughput Over Two-way Relay Channel (양방향 중계채널에서 최대 전송률을 위한 동적 전송 기법)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.31-37
    • /
    • 2009
  • In the two-way relay channel, the relay employ Amplify-and-Forward (AF) or Decode-and-Forward (DF) protocol, and broadcast the network-coded signal to both user. In the system, DF protocol provides maximum throughput at low signal to noise ratio(SNR). On the other hand, at high SNR, AF protocol provides maximum throughput. The paper propose active transmission scheme which employ Amplify-and-Forward or Decode-and-Forward protocol based on received SNR at the relay over Two-way relay channel. The optimal threshold is investigated numerically for switching the protocol. Through numerical results, we confirm that the proposed scheme outperforms conventional schemes over two-way relay channel.

  • PDF

Performance Bounds of an Amplify-and-Forward Relay System with Multiple Rayleigh-faded Co-channel Interferers (레일리 페이딩을 겪는 다중 간섭 채널 환경에서 증폭-후-전달 릴레이 시스템의 성능 한계)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.87-96
    • /
    • 2012
  • In this paper, we consider a 2-hop relay system where both the relay and destination nodes suffer from the arbitrary number of co-channel interferers. More specifically, assuming that the relay and access channels as well as interference channels are all subject to Rayleigh fading, we derive an exact closed-form expression for outage probability of the amplify-and-forward (AF) relay system, and furthermore compute its upper and lower bounds. Based on these bounds, we derive the upper and lower bounds on the average bit error rate (BER) of the AF relay system. We also confirm the accuracy of our derivation by investigating the performance gap between the performance bounds under consideration and simulation results.

Performance analysis of cooperative communication algorithm with various relay conditions (다양한 릴레이 조건에 따른 협력 통신 기법의 성능 분석)

  • Kim, Yoon-Hyun;Park, Jae-Sung;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.329-332
    • /
    • 2009
  • In this paper, performance of cooperative communication system is analyzed with various relay conditions for mobile communication system using OFDM. We research mainly on the performance analysis of amplify-and-forward scheme. First, we analyzed the diversity gain between the number of antenna on the relay is one and two. And then, in this paper, we analyzed difference of the performance with distance between relay and mobile. Amplify-and-forward scheme has the problem that the noise components are also amplified in low sinal-to-noise (SNR) condition. The results of this paper can be applicable to the cooperative relay systems.

  • PDF

Cooperative Diversity Based on Interleavers and Its efficient Algorithm in Amplify-And-Forward Relay Networks (Amplify-Forward Relay Network의 인터리버에 근거한 협동 다이버시티와 그 효과적 알고리즘)

  • Yan, Yier;Jo, Gye-Mun;Balakannan, S.P.;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.94-102
    • /
    • 2009
  • In [1], the authors have proposed a novel scheme to achieve full diversity and to combat the time delays from each relay node, but decode-and-forward (DF) model operation mode puts more processing burden on the relay. In this paper, we not only extend their model into amplify and forward (AF) model proposed in [2],[3], but also propose an efficient decoding algorithm, which is able to order the joint channel coefficients of overall channel consisting of source-relay link and relay-destination link and cancels the previous decoded symbols at the next decoding procedure. The simulation results show that this algorithm efficiently improves its performance achieving 2-3dB gain compared to [1] in high SNR region and also useful to DF achieving more than 3dB gain compared to an original algorithm.

Diversity-Multiplexing Tradeoff Analysis for Half-Duplex Dynamic Decode-and-Forward Relay Protocol Using Multiple Antennas at a Single Node (단일 노드에서 다중 안테나를 사용하는 HD DDF Relay 프로토콜에 대한 DMT 분석)

  • Yim, Changho;Kim, Taeyoung;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.426-435
    • /
    • 2013
  • The diversity-multiplexing tradeoff (DMT) functions of three special half-duplex (HD) dynamic decode-and-forward (DDF) protocols with multiple antennas only at the source node, only at the destination node, and only at the relay node are analytically derived. The DMT functions of these three relay protocols are compared with one another and with those of the nonorthogonal amplify and forward (NAF) protocols.

Average Rate Performance of Two-Way Amplify-and-Forward Relaying in Asymmetric Fading Channels

  • Park, Jae-Cheol;Song, Iick-Ho;Lee, Sung-Ro;Kim, Yun-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.250-256
    • /
    • 2011
  • A two-way relaying (TWR) system is analyzed, where two source terminals with unequal numbers of antennas exchange data via an amplify-and-forward relay terminal with a single antenna. In the system considered herein, the link quality between the sources and relay can generally be asymmetric due to the nonidentical antenna configuration, power allocation, and relay location. In such a general setup, accurate bounds on the average sum rate (ASR) are derived when beamforming or orthogonal space time block coding is employed at the sources. We show that the proposed bounds are almost indistinguishable from the exact ASR under various system configurations. It is also observed that the ASR performance of the TWR system with unequal numbers of source antennas is more sensitive to the relay location than to the power allocation.

MMSE-Based Relaying Method for Multiuser Bidirectional Communications (여러 사용자 양방향 통신을 위한 MMSE-기반 중계 기법)

  • Joung, Jin-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.408-413
    • /
    • 2009
  • In this paper, minimum mean-square-error (MMSE)-based transceiver processing of a bidirectional amplify-and-forward (AF) relay having multiple antennas is proposed. Besides, the optimal beamforming vectors of users are designed in the sense of the sum rate maximization. Simulation results show that the proposed relay processing can effectively reduce both co-channel interferences and self-interferences and that the proposed beamforming method is proper to the bidirectional communication employing the AF relay.