• Title/Summary/Keyword: Ampere

Search Result 169, Processing Time 0.023 seconds

On the Characteristics of the Circulating Water Tank (회류수조의 특성)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.13 no.2
    • /
    • pp.9-14
    • /
    • 1977
  • The present paper concerns itself with characteristics of the circulating water tank, designed and constructed at the National Fisheries University of Busan. It is an elliptical ferro-concrete water tank 12 m long, 7 m wide and 1 m deep. The experimented part of water way is 5.67 In long, 1. 76 m wide and 1m deep. For the uniform straight flow are attached stainless plates in the curved parts and stainless pipes just befor the experimental part. The speed of flow can be easily controlled by changing the electric current in armarture of motor from 0 to 30 ampere according to the method of Toulon phase shift. The speed field is uniform and deviation is 0.04 when mean speed is 0.53m/sec at 225 R. P. M. except in the areas within 6cm from the walls.

  • PDF

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.

Quantum well - quantum wire phase transiton of photonic quantum ring laser (양자우물 - 양자선 상전이 현상의 광양자테 레이저)

  • Kwon, O-Dae;Noik Pan;Kim, Junyeon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.38-39
    • /
    • 2003
  • The GaAs semiconductor whispering gallery modes, produced in the peripheral Rayleigh band region of W/sub Rayleigh/ = (${\Phi}$/2)( 1-n/sub eff/n), exhibit novel properties of ultralow thresholds open to nano-ampere regime associated with photonic quantum ring (PQR) production (Fig 1 (a)). The PQR phenomena are associated with a photonic field-driven phase transition of quantum well(QW)-to-quantum wire (QWR) and hence the photonic (non-de Broglie) quantum corral effects, on the Rayleigh cavity confined carriers in dynamic steady state, occur as schematically shown in Fig 1. (omitted)

  • PDF

Harmonic Iron Loss Analysis of Permanent Magnet Motor for High-Speed Train (고속 전철 견인용 영구자석 전동기의 고조파 철손해석)

  • Seo, Jang-Ho;Chung, Tae-Kyung;Jung, Sang-Yong;Lee, Cheol-Gyun;Jung, Hyun-Kyo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.335-341
    • /
    • 2009
  • To predict efficiency of interior permanent magnet synchronous motor (IPMSM) for traction motor and to cope with the risk of demagnetization in the permanent magnets, accurate iron loss analysis and understanding of the characteristic of the iron loss are very important at motor design stage. In this paper, we present the method to estimate the iron loss for the IPMSM considering the driving conditions such as both field weakening control and maximum torque per ampere control.

A Study on the Improved Winding Method in Tubular Linear Induction Motor (TLIM의 권선밥법 개선의 관한 연구)

  • 임달호;홍정표
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.885-895
    • /
    • 1994
  • In this paper, we propose the one-Ampere conductor method which is able to calculate the flux distribution conceptually and easily, and the improved winding method which suppresses space harmonics of magnetormotive force and enhances the coefficient of utilization of primary iron core in tubular linear induction motor. We carry out no-load test to verify effectiveness of proposed method and analyze characteristics by finite element method. As a result, performances are improved and propriety of primary iron core is enhanced comparing with conventional model.

  • PDF

Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller (다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.26-35
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed maximum torque control of induction motor using slip angular speed and current condition at widely speed range. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

Development of the Electriochemical Type $CO_2$ Sensor Module using Solid Electrolyte (고체 전해질을 이용한 전기화학식 $CO_2$ 센서 모듈 개발)

  • Chung, Sung-In;Son, Jong-Dae;Lee, Seo-Hyun;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.191-194
    • /
    • 2007
  • This study focuses on the development of the Electrochemical type $CO_2$ sensor Module by using solid electrolyte which was first developed in our country. The module applied the creative fundamentals that the voltage state generated from Electro-chemical reaction using new materials is converted into $CO_2$ ppm. The study verified the accurate of Electromotive Force(EMF) through the experiment using high-impedance opamp(INA332) to measure EMF which ranges from 100mV to 600mV to be outputted from $CO_2$ sensor, and the small electric current of some nano-ampere(nA)

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller (퍼지-신경회로망 제어기를 이용한 유도전동기의 최대토크 제어)

  • Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose fuzzy-neural network controller that combines a fuzzy control and the Neural Networks for high performance control of induction motor drive, Also, this paper is proposed control of maximum torque per ampere of induction motor. This strategy is proposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using fuzzy-neural network controller is verified by simulation at dynamic operation conditions.

  • PDF

Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 최소 손실 벡터제어)

  • Chung, Euihoon;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • This paper presents a loss-minimizing vector control method for interior permanent magnet synchronous motor (IPMSM). Conventionally, maximum torque per ampere (MTPA) control, which minimizes copper loss, has been widely used in industry. Iron loss, however, is not considered in MTPA control. In this paper, the loss model, including iron loss and copper loss, is derived to further reduce drive loss. The loss-minimizing vector controller is implemented based on the loss model. The controller generates optimal current vectors according to the operating conditions. The performance and validity of the proposed method are proved by experimental results through comparison with conventional methods.

The Travelling Field of Two phase Linear Induction Motor (2상 Linear Induction Motor의 이동자계)

  • 이윤종;임달호
    • 전기의세계
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 1970
  • The foundation for the theoretical establishment of the linear motor lies in the investigation of the magnetic flux distribution in its airgaps. Generally speaking, the linear motor is similar, in the principle of its operation, to the general induction motor. However, there are great differences in the aspects of its structure and characteristics, especially, in the fact that the formation of its travelling magnetic field depends on the method of its winding. This paper is written in order to introduce the method of calculating the air gap magnetic flux distribution on the basis of its ampere-conductor in the case that 2 phase winding is applied on its open magnetic circuit iron core, and to present the results of investigation of the pulsation in its travelling fields. the first and second example of winding show the case of travelling magnetic field with the constant amplitude except the end region. The third example deals with the configuration of coil-side displaced outside the core and which produce the increased flux density at the ends, but, on the contrary, forms the pulsated travelling field.

  • PDF