• 제목/요약/키워드: Amounts of corrosion

검색결과 90건 처리시간 0.021초

Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향 (Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface)

  • 오세웅;최한철
    • 한국표면공학회지
    • /
    • 제40권5호
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

맨홀과 연결된 지하 열수송설비의 부식 원인 및 재질 내식성 평가 (Cause of Corrosion and Evaluation of Material Corrosion Resistance on Underground Heat Transport Facilities Connected to Manhole)

  • 송민지;최가현;김우철;이수열
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.193-202
    • /
    • 2022
  • Manholes and underground spaces are installed to manage the buried heat transport pipes of the district heating system, and the corrosion damage of the equipment placed in this space often occurs. The purpose of this work is to identify locations with a high risk of corrosion damage in the air vent and to establish preventive measures based on precise analysis via sampling of heat transport pipes and air vents that have been used for about 30 years. The residual thickness of the air vent decreased significantly by reaching ~1.1 mm in thickness, and locations of 60~70 mm away from a transport pipe were the most vulnerable to corrosion. The energy dispersive X-ray spectroscopy (EDS) analysis was performed in the corroded oxides, and it was found that chloride ion was contained in the corrosion products. Anodic polarization tests were carried out on the air vent materials (SPPS250, SS304) with varying the amounts of chloride ions at two different temperatures (RT, 80℃). The higher concentration of chloride ions and temperature are, the lower corrosion resistances of both alloys are.

슈퍼 듀플렉스 내식강의 부식특성 및 경도에 미치는 텅스텐 첨가의 영향 (Influence of W Additions on the Corrosion Characteristics and Hardness of Super Duplex Stainless Steel)

  • 한윤기;김정민
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.261-269
    • /
    • 2023
  • This study aims to investigate the effects of tungsten additions on the microstructure, corrosion characteristics, and hardness of super duplex stainless steel heat-treated at two different annealing temperatures. Under the annealing temperature of 1100℃, the microstructure of the stainless steels consisted mainly of ferrite, while under the annealing temperature of 1000℃, significant amounts of austenite and secondary phases were also observed. In terms of corrosion characteristics in 3.5 wt%NaCl solution, there was not a significant difference due to W addition at the 1100℃ conditions. However, at the 1000℃, a tendency of decreased corrosion resistance was observed with increasing the tungsten content. On the other hand, the micro-hardness of the stainless steel heat-treated 1000℃ showed an increasing trend with tungsten addition. This increase can be mainly attributed to the higher fraction of secondary phases, primarily sigma, known for their high hardness.

이상계 스테인레스 강 용접부의 인성과 내식성 거동 (Property differences between GTAW and SMAW duplex stainless steel weld metal)

  • 백광기;김희진;안상곤
    • Journal of Welding and Joining
    • /
    • 제4권3호
    • /
    • pp.58-71
    • /
    • 1986
  • Mechanical and corrosion property of duplex stainless steel weldments made by the GTAW and SMAW process were studied. Fracture toughness, general and local corrosion resistance of GTAW and SMAW weldments were evaluated in terms of Charpy V notch impact test, anodic polarization diagram, pitting corrosion rate, respectively. SMA weld metal showed much lower impact toughness and higher ductile-brittle transition temperature than GTA weld metal. Fractographic and EDX analysis on fracture surface of SMA weld metal demonstrated the existence of (Si, Ti), oxide in large amounts. Potentiodynamic anodic polarization diagram of GMA weld metal showed much lower passive current density than SMA weld metal in 4% $H_2/SO_4$ solution. And pitting corrosion rate test showed the same tendency. Relating the microstructure, chemistry and property, it can be concluded that GTA weld metal gives better toughness due to lower oxygen content, i.e. lower inclusion content, and better corrosion resistance due to higher Pitting Index(PI) than SMA weld metal.

  • PDF

Corrosion resistant self-compacting concrete using micro and nano silica admixtures

  • Jalal, Mostafa
    • Structural Engineering and Mechanics
    • /
    • 제51권3호
    • /
    • pp.403-412
    • /
    • 2014
  • In this paper, enhancement of corrosion and chloride resistance of high performance self compacting concrete (SCC) through incorporating nanosilica into the binder has been investigated. For this purpose, different mixtures were designed with different amounts of silica fume and nano silica admixtures. Different binder contents were also investigated to observe the binder content effect on the concrete properties. Corrosion behavior was evaluated by chloride penetration and resitivity tests. Water absorption and capillary absorption were also measured as other durability-related properties. The results showed that water absorption, capillary absorption and Cl ion percentage decreased rather significantly in the mixtures containing admixtures especially blend of silica fume and nano silica. By addition of the admixtures, resistivity of the SCC mixtures increased which can lead to reduction of corrosion probability.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • 제2권4호
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

콘크리트 밀실화에 의한 염해대책 및 방청효과에 관한 실험적 연구 (제2보, 철근의 부식 현황을 중심으로) (An Experimental Study on the Effect of Corrosion Protection by Tighting Concrete Used Fly-ash and Silica Fume (Part2, In the case of Steel Bar s Corrosion))

  • 이상수;김진만;남상일;김문한;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.148-151
    • /
    • 1994
  • Up to now, sea sand without complete removal of salt is being used in the construction works because there is little satisfactory counterplan for the substitute aggregate. In the case that such sea sand is used in the reinforced concrete, the residual salt gives rise to deterioration phenmenon and iron corrosion, reducing durability of the ferro-concrete structures. The paper, an experimental study on the effect of corrosion protection by tighting concrete used SF and FA, is to investigate general steel bar's corrosion and to develop concrete using sea sand economically after it is analyzed and examinated ratio of the corrosion area affected by the autoclave cycle. As a test results, as for corrosion area ratio, it is very effective to use admixrutes such as SF and FA which decrease corrosion area remarkably with increasing the amounts of admixtures. Accordingly the use of admixtures is advantageous for tightening concrete and has an effect of salt damage prevention and rust protection in concrete used sea sand.

  • PDF

Influence of Citric Acid on the Metal Release of Stainless Steels

  • Mazinanian, N.;Wallinder, I. Odnevall;Hedberg, Y.S.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.166-171
    • /
    • 2015
  • Knowledge of how metal releases from the stainless steels used in food processing applications and cooking utensils is essential within the framework of human health risk assessment. A new European standard test protocol for testing metal release in food contact materials made from metals and alloys has recently been published by the Council of Europe. The major difference from earlier test protocols is the use of citric acid as the worst-case food simulant. The objectives of this study were to assess the effect of citric acid at acidic, neutral, and alkaline solution pH on the extent of metal release for stainless steel grades AISI 304 and 316, commonly used as food contact materials. Both grades released lower amounts of metals than the specific release limits when they were tested according to test guidelines. The released amounts of metals were assessed by means of graphite furnace atomic absorption spectroscopy, and changes in the outermost surface composition were determined using X-ray photoelectron spectroscopy. The results demonstrate that both the pH and the complexation capacity of the solutions affected the extent of metal release from stainless steel and are discussed from a mechanistic perspective. The outermost surface oxide was significantly enriched in chromium upon exposure to citric acid, indicating rapid passivation by the acid. This study elucidates the effect of several possible mechanisms, including complex ion- and ligand-induced metal release, that govern the process of metal release from stainless steel under passive conditions in solutions that contain citric acid.

A Micro-Mechanics Based Corrosion Model for the Prediction of Service Life in Reinforced Concrete Structures

  • Song, Ha-Won;Kim, Ho-Jin;Kim, Tae-Hwan;Byun, Keun-Joo;Lee, Seung-Hoon
    • Corrosion Science and Technology
    • /
    • 제4권3호
    • /
    • pp.100-107
    • /
    • 2005
  • Reinforcing steel bars in reinforced concrete structures are protected from corrosion by passive film on the steel surface inside concrete with high alkalinity. However, when the passive film breaks down due to chloride ion ingressed into the RC structures, a corrosion initiates at the surface of steel bars. Then, internal pressure by volume expansion of corrosion products in reinforcing bars induces cracking and spalling of cover concrete, which reduces not only durability performance but also structural performance in RC structures. In this paper, a service life prediction of RC structures is carried out by using a micro-mechanics based corrosion model. The corrosion model is composed of a chloride penetration model to evaluate the initiation of corrosion and an electric corrosion cell model and an oxygen diffusion model to evaluate the rate and the accumulated amounts of corrosion. Then, a corrosion cracking model is combined to the models to evaluate critical amount of corrosion product for initiation cracking in cover concrete. By implementing the models into a finite element analysis program, a time and space dependent corrosion analysis and a service life prediction of RC structures due to chloride attack are simulated and the results of the analysis are compared with test results. The effect of crack width on the corrosion and the service life of the RC structures are analyzed and discussed.

증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동 (Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube)

  • 신정호;임상엽;김동진
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.