• 제목/요약/키워드: Amount of carbon nanotube

검색결과 99건 처리시간 0.025초

Arbitrary Cutting of a single CNT tip in Nanogripper using Electrochemical Etching

  • Lee Junsok;Kwak Yoonkeun;Kim Soohyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권2호
    • /
    • pp.46-49
    • /
    • 2005
  • Recently, many research results have been reported about nano-tip using carbon nanotube because of its better sensing ability compared to a conventional silicon tip. However, it is very difficult to identify the carbon nanotube having proper length for nano-tip and to attach it on a conventional tip. In this paper, a new method is proposed to make a nano-tip and to control its length. The electrochemical etching method was used to control the length by cutting the carbon nanotube of arbitrary length and it was possible to monitor the process through current measurement. The etched volume of carbon nanotube was determined by the amount of applied charge. The carbon nanotube was successfully cut and could be used in the nanogripper.

다중벽 탄소나노튜브가 시멘트 페이스트의 유변학적 물성 및 압축강도에 미치는 영향 (Effect of Multi-Walled Carbon Nanotube on Rheological Behavior and Compressive Strength of Cement Paste)

  • 김지현;김원우;문재흠;정철우
    • 한국건설순환자원학회논문집
    • /
    • 제8권4호
    • /
    • pp.467-474
    • /
    • 2020
  • 탄소나노튜브는 뛰어난 역학적 성능 및 기능성으로 다양한 분야에서 활용되고 있는 나노소재이다. 탄소나노튜브를 건설재료 분야에 활용하는 연구는 현재의 화두 중 하나로, 예전에 비해 점차 많은 연구가 진행되고 있으나, 탄소나노튜브의 혼입률이 시멘트 페이스트의 압축강도 및 유변학적 물성에 미치는 영향을 검증한 문헌은 상대적으로 부족한 것으로 나타났다. 본 연구에서는 Polyvinyl Pyrrolidone을 사용하여 수용액 분산된 다중벽 탄소나노튜브를 이용하여 시멘트 페이스트를 제조하고, 이의 유변학적 물성 및 압축강도 특성을 확인하고자 하였다. 본 연구의 결과에 따르면, 탄소나노튜브의 혼입률이 증가할수록 소성점도 및 소성항복응력의 증가가 발생하였으며, 물시멘트비가 낮은 경우에 이러한 경향이 더욱 뚜렷하게 드러나는 것이 확인되었다. 탄소나노튜브 혼입 시멘트 페이스트의 압축강도는 물시멘트비가 0.30인 경우 탄소나노튜브 혼입률 0.1wt%에서, 물시멘트비가 0.40인 경우에는 혼입률 0.2wt%에서 최대가 되는 것으로 나타났다.

단일 CNT 팁에서 탄소나노튜브의 에칭부피에 관한 연구 (A Study on the Etched Volume of Carbon Nanotube in the Single CNT Tip)

  • 이준석;최재성;강경수;곽윤근;김수현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1126-1129
    • /
    • 2004
  • Because of the various length condition of carbon nanotube, it is very confined the application area of the single CNT tip. In this paper, it was proposed the cutting technique of single CNT tip and the relationship between the etched volume and the amount of the applied charge. It is possible to control the length of single CNT tip arbitrary using this technique. The etched volume and length in the single CNT tip can be predicted with the amount of the applied charge. It is very easy to make a single CNT tip with proper length using this technique and to make nanotweezer that was composed two single CNT tips.

  • PDF

A Study on the Thermal Properties of CNT reinforced Semiconductive Shield Materials Used in Power Cables

  • Yang, Hoon;Bang, Jeong-Hwan;Chang, Hong-Soon;Nah, Chang-Woon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.115-120
    • /
    • 2008
  • Use of the carbon nanotube is superior to general powder state materials of mechanical and electrical properties. Because its ratio of diameter and length (aspect ratio) is very large, it has been known as a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of semiconductive shield materials used in power cables can acquire excellent properties by using a small amount of carbon nanotubes. Thus, we investigated the thermal properties of the carbon nanotube, such as thermal conductivity, specific heat, and DSC (Differential Scanning Calorimetry). We found that a high thermal resistance level is demonstrated by using a small amount of carbon nanotubes. As a result, this tendency confirms high cross-linking density in a new network in which the carbon nanotube between carbon black constitute molecules shows a bond by similar constructive properties.

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • 강민지;왕문평;임연민;김진국;강동우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

카본나노튜브에 담지된 몰리브데늄 카바이드 촉매의 제조 및 전기화학적 산화반응 특성 (Fabrication of Carbon Nanotube Supported Molybdenum Carbide Catalyst and Electrochemical Oxidation Properties)

  • 조홍백;서민호;박융호
    • 공업화학
    • /
    • 제20권1호
    • /
    • pp.28-33
    • /
    • 2009
  • 카본나노튜브에 담지된 몰리브데늄 카바이드 촉매를 다양한 제조 조건을 통해 제조하여 촉매특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 촉매로써 전이금속의 낮은 활성을 극복하기 위한 방안으로 카본나노튜브를 지지체로 사용하였으며 전구체의 양 및 종류, 지지체의 산처리 방법, 탄화공정 온도조건 등을 변화하여 촉매를 제조하였다. 제조된 촉매는 ICP-AES, XRD, TEM을 통하여 촉매의 특성을 분석하였고, 메탄올의 전기화학적 산화반응을 통해 촉매의 활성을 비교하였다. 몰리브데늄 카바이드 촉매($Mo_2C/CNT$)의 다양한 제조방법으로 입자크기와 담지량을 변화시킬 수 있었으며, 입자의 크기와 담지량의 변화에 따른 전기화학적 산화반응의 특성을 설명할 수 있었다.

라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향 (Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology)

  • 우동균;노원진;이성재
    • 폴리머
    • /
    • 제34권6호
    • /
    • pp.534-539
    • /
    • 2010
  • 라텍스 블렌딩 기법을 이용하여 폴리스티렌(PS)/다중벽 탄소나노튜브(MWCNT) 나노복합재료를 제조하여 나노튜브 길이에 따른 나노복합재료의 유변학적 특성을 고찰하였다. 나노복합재료 제조에 사용된 단분산 PS 입자는 무유화제 유화중합으로 제조하였고, MWCNT는 불순물 제거와 분산성 향상을 위해 표면개질 과정을 거친 후 사용하였다. 최종적인 나노복합재료는 단분산 PS 입자와 개질한 MWCNT를 초음파 교반조에서 분산시킨 후 동결건조 과정을 거쳐 제조하였다. 나노복합재료의 MWCNT 함량과 나노튜브 길이에 따른 유변학적 특성은 소진폭 진동 전단유동을 부과시켜 평가하였다. 본 연구에서 고찰한 PS/MWCNT 나노복합재료는 MWCNT의 함량이 증가할수록, 나노튜브 길이가 길수록 유변물성 향상 효과가 뚜렷하였다. 이는 MWCNT 함량이 증가할수록 나노복합재료의 유변학적 특성이 액체적 특성에서 점차 고체적 특성으로 변화하기 때문이며, 나노튜브 길이가 길수록 네트워크 구조를 달성하는 임계 농도가 작아지기 때문인 것으로 판단된다.

나도 반도전층 재료의 기계적/화학적 특성 향상에 관한 연구 (A Study on the Improvement of Mechanical and Chemical Properties in Nano Semiconducting Materials)

  • 신동훈;국정호;나창운;박대희;양종석
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.739-744
    • /
    • 2007
  • In this paper, we have investigated mechanical and chemical properties by changing the content of carbon nanotube, which is component part of semiconductive shield in underground power transmission cable. Specimens were made of sheet with the eight of those for measurement. The condition of specimens was a solid sheet. Chemical properties of specimens was measured by FT-ATR (Fourier Transform Attenuated Total Reflectance). Stress-strain of specimens was measured by TENSOMETER 2000. A speed of measurement was 200[mm/min], ranges of stress and strain were 400[Kgf/Cm] and 600[%]. We could observe (unctional group (C=O, carbonyl group) of specimens through FT-ATR. From these experimental result, the concentration of functional group [C=O] was high accor야ng to increasing the content of carbon nanotube. We could know CNT/EEA was excellent more than other specimens from above experimental results. In Addition, the elongation ratio was decreased, and yield strength was increased according to increasing the content of carbon nanotube. Also, from these experimental result, we could know that a small amount of CNT/EEA has a excellent mechanical and chemical properties.

전력케이블에서 탄소나노튜브 함량에 따른 반도전층 재료의 특성 연구 (A Study on the Properties of Semiconducting Materials with contents of Carbon Nanotube in Power Cable)

  • 양종석;신동훈;이경용;박대희
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.571-576
    • /
    • 2007
  • In this paper, we have investigated chemical, mechanical and structural properties by changing the content of carbon nanotube, Which is a component part of semiconductive shield in underground power transmission cable. The multi luminescence spectrometer MLA-GOLDS was used to investigate chemical properties of specimens. Also, the density meter EW-200SG was used to investigate the mechanical properties of specimens, and the FE-SEM S-4300 in Hitachi was used for dispersion of CNT(Carbon nanotube). As a result, the cl intensity, which show the effect of oxidation, was decreased by CNT of 1 [wt%], and the density of semiconductive shield materials with CNT and EEA(Ethylene Ethyl Acrylate) is lower than that for commercial semiconductive shield materials. Also, the properties of dispersion showed an increase according to an increase in the ratio of CNT, and the properties were the best at 5 wt%. Therefore, excellent chemical, mechanical and structural properties can be improved with the small amount of CNT.