• Title/Summary/Keyword: Amount of Snowfall

Search Result 64, Processing Time 0.033 seconds

The Distribution of Snowfall by Siberian High in the Honam Region - Emphasized on the Westward Region of the Noryung mountain ranges - (시베리아 고기압 확장시 호남 지방의 강설 분포 - 노령 산맥 서사면 지역을 중심으로 -)

  • 이승호;천재호
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.173-183
    • /
    • 2003
  • This study aims to understand the patterns of spatial distribution of snowfall by Siberian High in the Honam region in Korea. In the Honam region, Siberian High induces snowfall dominantly. There is a huge amount of snowfall in the westward of the Noryung mountain ranges to the Wert coast in the Honam region affected by northwesterly wind directly from the Siberian High. The westward of the Noryung mountain ranges such as a heavy snowfall region has a various pattern of distribution of snowfall due to topography. The coast region has a large amount of snowfall by sea effect. And, snowfall amount is decreased from the coast to the inland plain. However, in front of mountain, snowfall is increase by reason of a forced ascending air to the mountain. In general the region where frequently appear a cumuliform cloud has a large amount of snowfall. A cumuliform cloud is frequent in the mountainous region in inland, the coast, and the inland plain in order Snowfall is intense in the coast and the mountainous region, and weak in the inland plain. In the mountainous region, a cumuliform cloud induced tv a forced ascending air by reason of topography generates snowfall mostly. This fact is the main difference with snowfall in the mountainous region and the coast region. In the result, in the Honam region, snowfall distribution and snowfall pattern are various, according to geographical climate factor such as sea and topography. The heavy snowfall region in the Honam region is divided into the coast region affected by sea effect and the mountainous region affected by topography effect.

Analysis of Traffic Characteristics of General National Roads by Snowfall in Gangwon-do (강원도에서 적설에 의한 일반국도 교통 특성 분석)

  • Jo, Eun Su;Kwon, Tae-Yong;Kim, Hyunuk;Kim, Kyu Rang;Kim, Seung Bum
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.157-170
    • /
    • 2021
  • To investigate the effect of snowfall on the traffic of general roads in Gangwon-do, case analysis was performed in Gangneung, Pyeongchang, and Chuncheon using ASOS (Automated Synoptic Observing System) snowfall data and VDS (Vehicle Detector System) traffic data. First, we analyzed how much the traffic volume and speed decrease in snowfall cases on regional roads compared to non-snow cases, and the characteristics of monthly reduction due to snowfall were investigated. In addition, Pearson correlation analysis and regression analysis were performed to quantitatively grasp the effect of snowfall on traffic volume and speed, and sensitivity tests for snowfall intensity and cumulative snowfall were performed. The results showed that the amount of snowfall caused decrease both in the traffic volume and speed from usual (non-snowfall) condition. However, the trend was different by region: The decrease rate in traffic volume was in the order of Gangneung (17~22%), Chuncheon (14~17%), and Pyeongchang (11~14%). The decrease rate in traffic speed was in the order of Chuncheon (9~10%), Gangneung (8~9%), Pyeongchang (5~6%). No significant results were found in the monthly decrease rate analysis. In all regions, traffic volume and speed showed a negative correlation with snowfall. It was confirmed that the greater the amount of traffic entering the road, the greater the slope of the trend line indicating the change in snowfall due to the traffic volume. As a result of the sensitivity test for snowfall intensity and cumulative snowfall, the snowfall information at intervals of 6-hours was the most significant.

A Study on Predictability of Snowfall Amount due to Fine Difference of Spatial Distribution of Remote Sensing based Sea Surface Temperature (원격 탐사 기반 해양 표면 온도의 미세 분포 차이에 따른 강설량 예측성 연구)

  • Lee, Soon-Hwan;Yoo, Jung-Woo
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1481-1493
    • /
    • 2014
  • In order to understand the relation between the distribution of sea surface temperature and heavy snowfall over western coast of the Korean peninsula, several numerical assessments were carried out. Numerical model used in this study is WRF, and sea surface temperature data were FNL(National Center for Environment Prediction-Final operational global analysis), RTG(Real Time Global analysis), and OSTIA(Operational Sea Surface Temperature and Sea Ice Analysis). There were produced on the basis of remote sensing data, such as a variety of satellite and in situ observation. The analysis focused on the heavy snowfall over Honam districts for 2 days from 29 December 2010. In comparison with RTG and OSTIA SST data, sensible and latent heat fluexes estimated by numerical simulation with FNL data were higher than those with RTG and OSTIA SST data, due to higher sea surface temperature of FNL. General distribution of RTG and OSTIA SST showed similar, however, fine spatial differences appear in near western coast of the peninsula. Estimated snow fall amount with OSTIA SST was occurred far from the western coast because of higher SST over sea far from coast than that near coast. On the other hand, snowfall amount near coast is larger than that over distance sea in simulation with RTG SST. The difference of snowfall amount between numerical assessment with RTG and OSTIA is induced from the fine difference of SST spatial distributions over the Yellow sea. So, the prediction accuracy of snowfall amount is strongly associated with the SST distribution not only over near coast but also over far from the western coast of the Korean peninsula.

Economic Loss Assessment caused by Heavy Snowfall - Using Traffic Demand Model and Inoperability I-O Model (대설의 경제적 피해 - 교통수요모형과 불능투입산출모형의 적용)

  • Moon, Seung-Woon;Kim, Euijune
    • Journal of Korea Planning Association
    • /
    • v.53 no.6
    • /
    • pp.117-130
    • /
    • 2018
  • Heavy snow is a natural disaster that causes serious economic damage. Since snowfall has been increasing recently, there is a need for measures against heavy snowfall. In order to make a policy decision on heavy snowfall, it is necessary to estimate the precise amount of damage by heavy snowfall. The direct damage of the heavy snow is severe, however the indirect damage caused by the road congestion and the urban dysfunction is also serious. Therefore, it is necessary to estimate indirect damage of snowfall. The purpose of this study is to estimate the effects on the regional economy from the limitation in traffic logistics caused by heavy snow using the transport demand model and inoperability input-output Model. The result shows that the amount of production loss caused by the heavy snow is KRW 2,460 billion per year and if the period of snowfall removal is shortened by one day or two days, it could be reduced to KRW 1,219 or 2,787 billion in production loss.

Development of Weight Type Snowfall Gauge and Observation (중량식 강설량계 개발과 관측)

  • Lee, Bu-Yong
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • We need water equivalent unit data of snowfall for the purpose of forecast and hydrology related research area. This study developed new method of automatic recording snowfall as weight unit. The instrument designed for measuring weight of snowfall by stain-gauge loadcell. Field test of instrument carried out at Daegwallyeong Obs. Station from 22 Jan. to 22 Feb. 2007. During observation period there is 15.3 cm snow depth and 16.0 mm of accumulated water equivalent depth at Daegwallyeong Obs. Station on 13 to 14 Feb. 2007. But the instrument of this study recorded 22.1 mm of water equivalent depth. It is not easy to explain difference between Daegwallyeong and this study. Because this study is only one case of comparison of snow measurement and there is very little amount of snow observation research. The density of snowfall calculated from 0.09 to $0.15g/cm^3$ from the observation data of 13 to 14 Feb. 2007. There is high relation between radar echo and snowfall amount measured by weight unit. It can supports forecast of snowfall and development of numerical model for forecast.

Analysis of Road Snow-removal Infrastructure using Road Snow-removal Historical Data (도로제설 이력자료 기반 제설 인프라 분석)

  • Kim, Jin Guk;Kim, Seoung Bum;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.83-90
    • /
    • 2017
  • PURPOSES : In this study, systematic road snow-removal capabilities were estimated based on previous historical data for road-snowremoval works. The final results can be used to aid decision-making strategies for cost-effective snow-removal works by regional offices. METHODS : First, road snow-removal historical data from the road snow-removal management system (RSMS), operated by the Ministry of Land, Infrastructure and Transport, were employed to determine specific characteristics of the snow-removal capabilities by region. The actual owned amount and actual used amount of infrastructure were analyzed for the past three years. Second, the regional offices were classified using K-means clustering into groups "close" to one another. Actual used snow-removal infrastructure was determined from the number of snow-removal working days. Finally, the correlation between the de-icing materials used and infrastructure was analyzed. Significant differences were found among the amounts of used infrastructure depending on snowfall intensity for each regional office during the past three years. RESULTS:The results showed that the amount of snow-removal infrastructure used for low heavy-snowfall intensity did not appear to depend on the amount of heavy snowfall, and therefore, high variation is observed in each area. CONCLUSIONS:This implies that the final analysis results will be useful when making decisions on snow-removal works.

The Study for Classifying Snowfall Area Types with Consideration of Snowfall Characteristics and Times (강설특성과 강설시간을 고려한 강설지역의 유형 구분에 관한 연구)

  • Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.21-33
    • /
    • 2020
  • Purpose: The objective of this research is to classify snowfall area types with consideration of past regional snowfall characteristics and times for the effective local snow removal response systems of 229 local government districts. Method: This research first collected snowfall data of South Korea meteorological stations, and classified regional types using successive snowfall time. This research finally produced GIS maps using regional type information of snowfalls by applying GIS analysis methods. Result: This research provides five types of snowfall regions including 'frequent heavy snowfall regions', 'frequent light snowfall regions', 'rare heavy snowfall regions', 'average snowfall regions', and 'rare light snowfall regions' based on analysis results. Conclusion: Results of this research can be used as basic information for regional demand estimations of snow removal equipments, materials, vehicles, and personnel for the efficient snow removal response systems.

A Numerical Case Study Examining the Orographic Effect of the Northern Mountain Complex on Snowfall Distribution over the Yeongdong Region (북한 지역의 산맥군이 영동 지역의 겨울철 강설 분포에 미치는 영향에 관한 수치 연구)

  • Lee, Jae Gyoo;Kim, Yu Jin
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.345-370
    • /
    • 2009
  • Numerical experiments using the Weather Research and Forecasting (WRF) model were done to identify the role of the mountain ranges in the northern part of the Peninsula (referred as "the northern mountain complex"), in the occurrence of two heavy snowfall events over the Yeongdong region on 7-8 December 2002 and 20-21 January 2008. To this end, control simulations with the topography of the northern mountain complex and other simulations without the topography of the mountain complex were performed. It was revealed that the amount of snowfall over the Yeongdong region from the control simulation much more exceeded that of the simulation without the topography of the mountain complex. This increase of the snowfall amount over the Yeongdong region can be explained as follows: As the upstream flow approached the northern mountain complex, it deflected around the northern mountain complex due to the blocking effect of the mountains with a low Froude number less than ~0.16. This lead to the strengthening of northeasterly over the East Sea and over the Yeongdong region. The strong northeasterly is accompanied with much more snowfall over the Yeongdong region by intensifying air-mass modification over the sea and the orographic effect of the Taeback mountains. Thus, it was concluded that the topography of the northern mountain complex is one of the main factors in determining the distribution and amount of precipitation in the Yeongdong region when there is an expansion of the Siberian High toward the East Sea.

Performance of Windbreak Fence for Snowfall Measurement of Regional Meteorological Office (기상대 적설 측정 바람막이팬스의 성능평가)

  • You, Ki-Pyo;Kim, Young-Moon;You, Jang-Youl;Paek, Sun-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2014
  • Meteorological observatories use measuring boards on even ground in open areas to measure the amount of snowfall. However, it is very difficult to evaluate the accurate amount of snowfall because of the effects of the wind. Therefore, this study tried to determine the internal wind flow inside a windbreak fence to identify an area that was not affected by wind in order to measure the snowfall. We performed a computational fluid dynamics analysis, wind tunnel test of the type and height of the windbreak fence, and analyzed the wind flow inside the fence. The results showed that a double windbreak fence was better than a single windbreak fence for reducing the wind velocity. The reduction of the wind velocity was highest in the middle of a windbreak fence with a width of 4 m and a height of 60cm, where the windbreak fences were fixed to the ground.

Impacts of Global Temperature Rise on the Change of Snowfall in Korea (전구 기온 상승이 한국의 적설량 변화에 미치는 영향)

  • 이승호;류상범
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.463-477
    • /
    • 2003
  • This study identified the effects of global temperature rise on snowfall change over Korea selecting Seoul, Gangneung, Gunsan, and Daegu as study areas. The trend of snowfall change has generally decreased since 1950s over Korea, but has only increased in Gunsan since 1990s. The variation of snowfall days are similar to those of snowfall. The relationship between snowfall over Korea and the anomaly of global mean temperature in spring has a negative correlation. The change of Siberian High intensity also has a good relationship with snowfall in both Gunsan and Gangneung; the former is positively correlated while the latter is negatively correlated. This result might suggest that if the intensity of Siberian High would weakens due the ongoing global warming in the future, there would be a possibility that the amount snowfall could decrease in Gunsan but it could increase in Gangneung.