DOI QR코드

DOI QR Code

The Study for Classifying Snowfall Area Types with Consideration of Snowfall Characteristics and Times

강설특성과 강설시간을 고려한 강설지역의 유형 구분에 관한 연구

  • Kim, Geunyoung (Department of Real Estate and Construction, Kangnam University)
  • Received : 2019.09.04
  • Accepted : 2019.12.31
  • Published : 2020.03.31

Abstract

Purpose: The objective of this research is to classify snowfall area types with consideration of past regional snowfall characteristics and times for the effective local snow removal response systems of 229 local government districts. Method: This research first collected snowfall data of South Korea meteorological stations, and classified regional types using successive snowfall time. This research finally produced GIS maps using regional type information of snowfalls by applying GIS analysis methods. Result: This research provides five types of snowfall regions including 'frequent heavy snowfall regions', 'frequent light snowfall regions', 'rare heavy snowfall regions', 'average snowfall regions', and 'rare light snowfall regions' based on analysis results. Conclusion: Results of this research can be used as basic information for regional demand estimations of snow removal equipments, materials, vehicles, and personnel for the efficient snow removal response systems.

연구목적: 본 연구는 우리나라의 229개 기초지자체 권역을 대상으로 지역특성을 고려한 효과적인 지역 제설 대응체계를 구축할 수 있도록 과거의 지역별 강설특성과 강설시간을 이용하여 강설지역 유형을 구분하는 것을 목적으로 한다. 연구방법: 본 연구를 위해 우선적으로 기상관측소 기준의 강설 데이터를 수집하였고, 연속 강설 시간을 이용하여 지역유형을 구분하였다. 마지막으로 GIS분석기법을 적용하여 강설지역 유형에 대한 정보를 GIS지도로 제작하였다. 연구결과: 지역유형을 분류한 결과 '눈이 자주 많이 오는 지역', '눈이 자주 조금 오는 지역', '눈이 가끔 많이 오는 지역', '눈이 보통 오는 지역', '눈이 희박한 지역' 등 총 5개의 강설 지역유형이 도출되었다. 결론: 본 연구의 결과는 효율적인 제설대응체계 구축을 위한 제설 장비, 자재, 차량, 인력의 지역별 수요를 추정하는데 기초정보로 활용될 수 있다.

Keywords

References

  1. Anselin, L. (1995). "Local indicator of spatial association-LISA." Geographical Analysis, Vol. 27, pp. 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  2. Choi, J.-S. (1990). "The Classification of Snowfall Area and its Reginal Characteristics of South Korea." Journal of Korean Geographic Society, Vol. 25, No. 1, pp. 35-48.
  3. Chung, K.-Y., Jung, Y.-S., Hwang, B.-J. (1999). "Classification of Snowfall Regions using Principal Component Analysis." Asia-Pacific Journal of Atmospheric Sciences, Vol. 35, No. 3, pp. 466-473.
  4. Han, W.-S., (2014). "Increase and Countermeasures for Vulnerable Areas due to Climate Change." KRIHS Policy Brief, No. 450.
  5. Jenks, G.F. (1967). "The Data Model Concept in Statistical Mapping." International Yearbook of Cartography Vol. 7, pp. 186-190.
  6. Kim, H.-J., Oak, Y.-S., Kim, G.-Y. (2017a). "Regional snows scenario for the support systems Analysis." Journal of the Korea Society of Disaster Information, Vol. 13, No. 2, pp. 163-172. https://doi.org/10.15683/kosdi.2017.06.30.163
  7. Kim, H.-J., Kim, S.-Y., Kim, G.-Y. (2017b). "Estimating Equipment and vehicle Demands for Snow Removal Tasks by Road Snow Removal Scenarios", Journal of the Society of Disaster Information, Vol. 13, No. 2, pp. 199-212.
  8. Kim, S.-B., Shin, H.-J., Ha, R., Kim, S.-J. (2012). "Spatio-temporal Analysis of Snowfall for 5 Heavy Snowfall Areas in South Korea." Journal of KSCE, Vol. 32, No. 2B, pp. 103-111.
  9. Lee, J.-S., Shin, C.-D., Kim, B.-C. (2010). "A Study on the Regionalization of Snowfall using Multivariate Analysis in Korea." Korea Water Resources Association Conference, pp. 1591-1595.
  10. Lee, K.-M., Lee, S.-H. (2006). "The Spatial Distribution of Snowfall and its Development Mechanism over the Honam Area." Journal of Korean Geographic Society, Vol. 41, No. 4, pp. 457-469.
  11. Ministry of the Interior and Safety (2017). The Establishment of Tailored Snow Removal Correspondence System Considering Regional Characteristics. Ministry of the Interior and Safety, MPSS-Nature-2014-72, Sejong, Korea.
  12. Ministry of the Interior and Safety (2018). Statistical Yearbook of Natural Disaster 2017. Ministry of the Interior and Safety, 11-1741000-000002-10, Sejong, Korea