• 제목/요약/키워드: Amount of Heat

검색결과 2,362건 처리시간 0.032초

당근 가공시 열처리 조건에 따른 휘발성 Terpenoids 함량 비교 (Comparison of Volatile Terpenoid Content from Thermal Processing Condition in Carrot)

  • 박신
    • 생명과학회지
    • /
    • 제12권5호
    • /
    • pp.589-594
    • /
    • 2002
  • 당근의 열처리 조건에 따른 휘발성 terpenoids 함량의 변화를 조사하였는데, 열처리 온도가 높을수록 휘발성 terpenoids가 많이 감소하였으며, 열처리 시간에 따른 휘발성 terpenoids는 $\alpha$-pinene 및 total terpenoids의 경우 최초 30분 동안 급속히 감속하였으며, 그 후 시간이 지남에 따라 감소율이 낮아지는 경향을 보였다 당근주스의 살균 온도별, 시간별 휘발성 terpenoids의 변화를 조사한 결과, 살균온도가 높을수록 휘발성 terpenoids 함량이 빠른 속도로 감소함을 보여주고 있으며, 살균시간에 따른 휘발성 terpenoids의 함량은 최초 20분간 급속히 감소하다가 이후에는 완만하게 감소하였다. Total terpenoids의 경우 10$0^{\circ}C$에서 20분간 살균했을 시 6$0^{\circ}C$ 및 8$0^{\circ}C$에서 60분간 살균했을 시 보다 더 많이 감소하였는데, 당근주스의 휘발성terpenoids 함량을 줄이기 위해서는 고온단시간 살균이 저온장시간 살균보다 더 유리하다는 것을 알 수 있었다.

하이브리드 Tri-generation 가스엔진-유기랭킨사이클 시스템의 설계 및 열역학적 해석 (Design and Thermodynamic Analysis of Hybrid Tri-generation Gas Engine-Organic Rankine Cycle)

  • 성태홍;윤은구;김현동;최정환;채정민;조영아;김경천
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2015
  • In a gas engine, the exhaust and the engine cooling water are generated. The engine cooling water temperature is $100^{\circ}C$ and the exhaust temperature is $500^{\circ}C$. The amount of heat of engine cooling water is 43 kW and the amount of heat of exhaust is 21 kW. Eight different hybrid organic Rankine cycle (ORC) system configurations which considering different amount and temperature of waste heat are proposed for two gas engine tri-generation system and are thermodynamically analyzed. Simple system which concentrating two different waste heat on relatively low temperature engine cooling water shows highest thermal efficiency of 7.84% with pressure ratio of 3.67 and shaft power of 5.17 kW.

내부경화형 구상흑연주철 롤의 미세조직과 경도에 미치는 열처리의 영향 (Effect of Heat Treatment on the Microstructure and Hardness of Internally Hardened Ductile Cast Iron Roll)

  • 이상묵;김도훈;윤서현
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This study was investigated the effect of heat treatment on the microstructure and hardness of internally hardened ductile cast iron roll. The following conclusions were obtained. Some of the graphite was decreased and a bainite was produced by heat treatment. It decreased due to the decomposition of some of the cementite precipitated in the as-cast by heat treatment, but there was no significant change when it reached a certain depth. Hardness increased due to formation of bainite by heat treatment. On the surface, the hardness decreased due to the decrease in the amount of transformation of cementite into bainite, but there was no change beyond a certain depth.

열교환기에 대한 스케일 완화장치의 성능평가 (Performance Evaluation of Scale Mitigation Unit for Heat Exchangers)

  • 모정하;신상철;김경우
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1149-1156
    • /
    • 2001
  • The objective of the present study is to investigate the performance of electronic scale mitigation unit(ESMU), which reduces the amount of scale in a heat exchanger. The circular tube with diameter of 19mm and plate-and-frame heat exchangers with 20 thermal plates were used for the tests. In order to accelerate the rate of scale in a laboratory test, artificial hard water of 1000ppm(as CaCO$_3$) was recirculated at a flow rate of 5 lpm, 7 lpm, and 9 lpm throughout the tests. The effect of ESMU on the scale thickness and overall heat transfer coefficients was examined. The test results showed that the ESMU could reduce the scale deposits even in the acceleated test.

지반 깊이 및 열특성 영향에 따른 매스콘크리트의 수화열 해석 (A Parameter Study on Heat of Hydration in Mass Concrete Affected by Foundation Depth and Various Thermal Properties)

  • 채숙희;양성철;박종원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.799-804
    • /
    • 2002
  • This paper is mainly Intended to show an effect of foundation depth on heat of hydration in mass concrete. From the analysis, it was found that the foundation depth which is not affected by the heat conduction is more than 5 m. But this study shows that, an optimum foundation depth for the FEM analysis for heat of hydration in mass concrete is approximately 1 m from this study. And in order to study tile significance of various parameters, a sensitivity analysis of heat transfer in mass concrete is performed and the amount of heat liberated at complete hydration of unit weight of cement and the reaction velocity of hydration are the most sensitive parameters factors of other various parameters.

  • PDF

The Effect of Ambient Air Condition on Heat Transfer of Hot Steel Plate Cooled by an Impinging Water Jet

  • Lee, Pil-Jong;Park, Hae-Won;Lee, Sung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.740-750
    • /
    • 2003
  • It has been observed that the cooling capacity of an impinging water jet is affected by the seasonal conditions in large-scale steel manufacturing processes. To confirm this phenomenon, cooling experiments utilizing a hot steel plate cooled by a laminar jet were conducted for two initial ambient air temperatures (10$^{\circ}C$ and 40$^{\circ}C$) in a closed chamber, performing an inverse heat conduction method for quantitative comparison. This study reveals that the cooling capacity at an air temperature of 10$^{\circ}C$ is lower than the heat extracted at 40$^{\circ}C$. The amount of total extracted heat at 10$^{\circ}C$ is 15% less than at 40$^{\circ}C$ , These results Indicate the quantity of water vapor, absorbed until saturation, affects the mechanism of boiling heat transfer.

분말야금용 수분사 철분의 열처리 특성 (Heat Treatment Properties of Water Atomized Iron Powder for Powder Metallurgy)

  • 김윤채
    • 열처리공학회지
    • /
    • 제9권1호
    • /
    • pp.62-68
    • /
    • 1996
  • In order to establish making process of water atomized iron powder for powder metallurgy, effect of heat treatment condition on change of powder properties and impurities was investigated at each tempeature of $850{\sim}950^{\circ}C$. The results are as follows. Particle morphology of iron powder changed slightly from sphercial type to irregular type and the amount of fine particle decreased more and more with increasing of heat treatment time at each temperature. The flow rate and apparent desity of iron powder also decreased due to particle coalescence in order of $850^{\circ}C$, $950^{\circ}C$, $900^{\circ}C$. Those powder Properties became to decrease particularly at $900^{\circ}C$ in alpha iron region. On the other hand, residual carbon and oxygen contents in iron powder decreased extremely with increasing of heat treatment temperature and time.

  • PDF

고온로의 가열 온도에 의한 리기다소나무와 일본잎갈나무 생엽과 생지의 연소온도변화 (Burning-Temperature Change of Living Branches and Leaves of Pinus rigida and Larix leptolepis)

  • Kim, Kwan-Soo;In-Soo Jang;Ki-Don Park;Su-Jung Kim
    • The Korean Journal of Ecology
    • /
    • 제18권3호
    • /
    • pp.333-340
    • /
    • 1995
  • This study aims to examine how the amount of sample and changes in combustible temperature of living branches and leaves treated with high temperature are associated with combustible time of two coniferous trees, Pinus rigida (R) and Larix leptolepis (L), which are the main victims of forest fire. During the first thirty minutes at $80^{\circ}C$, moisture content of R was higher than that of L by 12%, but after four hours, the moisture content was both lowered by 4~5% and turned to highly combustible leaves. With living leaves, the maximal combustible temperature, regardless of heating temperature, turned out to be higher than normal temperature by $67~140^{\circ}C$, and that with living branches, it was higher by $113~207^{\circ}C$. Also, with living leaves (R, L), the duration time of combustion was as follows: 605, 906 seconds at $400^{\circ}C$ and 76, 227 seconds at $600^{\circ}C$, respectively. Concerning the relation between the amount of burnt fuel and maximal temperature, the more the former was, the higher the latter. The total amounts of combustion heat of living branches and living leaves were 1, 121 Cal (20.8%) and 1, 137 Cal (21.4%), respectively. The total amount of combustion heat increased in proportion to the amount of consumed fuel: 100 g of living leaves and branches gave rise to 128 Cal, whereas 300 g did 556 Cal, that was more than three times.

  • PDF

SiC입자강화 알루미늄기 복합재료의 마모특성 (Wear Characteristics of Al/SiCp Composites)

  • 김석원;박진성;대성주작
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.184-191
    • /
    • 2002
  • This study aims to investigate on the effects of alloying elements and heat treatment on the microstructures, wear and heat resistance of Al-Si-Cu-Mg-(Ni)/SiCp prepared by the duplex process developed in previous study, which consists of squeeze infiltration (1st process) and squeeze casting (2nd process). The hardness of composite increased with decrease in SiCp size and Ni addition in both the heat exposured composite and the as-cast one. And the heat and wear resisting properties was improved by the SiCp reinforcement and the Ni addition. The wear amount of Al/SiCp composite decreased with decreasing in the size of silicon carbide particle.

핀-관 열교환기의 착상 거동에 대한 표면 접촉각의 영향 (The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger)

  • 이관수;지성;이동욱
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.95-101
    • /
    • 2000
  • The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger is investigated experimentally. It is shown that both heat exchangers with hydrophilic and hydrophobic surfaces appear to have a better thermal performance than bare aluminium heat exchanger, but the improvements are very small. There is a little increase in the amount of the frost deposited onto the heat exchanger with both hydrophilic and hydrophobic surface. However, the effect of contact angle on the frost density is observed ; the frost with high density forms on the heat exchanger with hydrophilic surface ; and the frost with low density is deposited onto the heat exchanger with hydrophobic surface when compared with the frost deposited onto the heat exchanger with bare aluminium surface. This may be attributed to the fact that the shape of water droplets which condense on the surface of heat exchanger at the early stage of frosting varies with contact angle, and thus makes a difference on the structure of frost formation. From the experiments with different relative humidity of inlet air, it is shown that the variations of operating parameter make no influence on the effect of surface contact angle on the frosting behavior in the heat exchanger.

  • PDF