• Title/Summary/Keyword: Amorphous silicon films

Search Result 288, Processing Time 0.025 seconds

Properties of ZnO/TiO2 Bilayer Thin Films with a Low Temperature ALD Process (저온 원자층증착법으로 제조된 ZnO/TiO2 나노이층박막의 물성 연구)

  • Noh, Yunyoung;Han, Jeungjo;Yu, Byungkwan;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.498-504
    • /
    • 2011
  • We examined the microstructure and optical properties of crystallized ~30 nm-ZnO/~10 nm amorphous $TiO_2$ nano bilayered films as nano electrodes were deposited at extremely low substrate temperatures of $150-210^{\circ}C$. The bilayered films were deposited on silicon substrates with 10 cm diameters by ALD (atomic layer deposition) using DEZn (diethyl zinc(Zn(C2H5)2)) and TDMAT (tetrakis dimethyl-amid $titanium(Ti(N(CH_3)_2)_4)$ as the ZnO and $TiO_2$ precursors, respectively, and $H_2O$ as the oxidant. The microstructure, phase, and optical properties of the bilayered films were examined by FE-SEM, TEM, XRD, AES, and UV-VIS-NIR spectroscopy. FE-SEM and TEM showed that all bilayered films were deposited very uniformly and showed crystallized ZnO and amorphous $TiO_2$ layers. AES depth profiling showed that the ZnO and $TiO_2$ films had a stoichiometric composition of 1:1 and 1:2, respectively. These bilayered films have optical absorption properties in a wide range of ultraviolet wavelengths, 250-390 nm, whereas the single ZnO and $TiO_2$ films showed an absorption range of 350-380nm.

High aspect ratio Zinc Oxide nanorods for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.2-235.2
    • /
    • 2015
  • The front transparent conductive oxide (TCO) films must exhibit good transparency, low resistivity and excellent light scattering properties for high efficiency amorphous silicon (a-Si) thin film solar cells. The light trapping phenomenon is limited due to non-uniform and low aspect ratio of the textured glass [1]. We present the low cost electrochemically deposited uniform zinc oxide (ZnO) nanorods with various aspect ratios for a-Si thin film solar cells. Since the major drawback of the electrochemically deposited ZnO nanorods was the high sheet resistance and low transmittance that was overcome by depositing the RF magnetron sputtered AZO films as a seed layer with various thicknesses [2]. The length and diameters of the ZnO nanorods was controlled by varying the deposition conditions. The length of ZnO nanorods were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The uniform ZnO nanorods showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nanorods and much higher aspect ratios degraded the light scattering phenomenon. Therefore, we proposed our low cost and uniform ZnO nanorods for the high efficiency of thin film solar cells.

  • PDF

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

Nanostructural Features of nc-Si : H Thin Films Prepared by PECVD (PECVD 기법에 의해 제조된 nc-Si : H 박막의 나노 구조적 특성)

  • 심재현;정수진;조남희
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.56-61
    • /
    • 2003
  • Nanocrystalline hydrogenated silicon (nc-Si : H) thin films were deposited at room temperature by plasma enhanced chemical vapor deposition (PECVD): a mixture of SiH₄ and H₂ gas was introduced into the evacuated reaction chamber. When the H₂ gas flow rate was low, the density of Si-H₃ bonds was high in the films. On the other hand, when the H₂ gas flow rate was high, e.g., 100 sccm, a large number of Si-H bonds contributed to the passivation of the surface of the large volume of Si nanocrystallites. The relative fraction of the Si-H₃ and Si-H₂ bonds in the amorphous matrix varied sensitively with the H₂ gas flow rate. The variation was associated with the change in the intensity as well as the wavelength of the main PL peaks, indicating the change in the total volume as well as the size of the Si nanocrystallites in the films.

Synthesis of Zirconium Oxides on silicon by Radio-Frequency Magnetron Sputtering Deposition

  • Ma, Chunyu;Zhang, Qingyu
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.83-87
    • /
    • 2003
  • Zirconium oxide films have been synthesized by radio-frequency magnetron sputtering deposition on n-Si(001) substrate with metal zirconium target at variant $O_2$ partial pressures. The influences of $O_2$ partial pressures of the morphology, deposition rate, microstructure, and the dielectric constant of $ZrO_2$ have been discussed. The results show that deposition rate of $ZrO_2$ films decreases, the roughness, and the thickness of the native $SiO_2$ interlayer increases with the increase of $O_2$ partial pressure. $ZrO_2$ films synthesized at low $O_2$ partial pressure are amorphous and monoclinic polycrystalline in nanometer scale at low $O_2$ partial pressure. The relative dielectrics of $ZrO_2$ films are in the range of 12 to 25.

STRUCTURAL ANALYSIS OF COPPER PHTHALOCYANINE THIN FILMS FABRICATED BY PLASMA-ACTIVATED EVAPORATION

  • Kim, Jun-Tae;Jang, Seong-Soo;Lee, Soon-Chil;Lee, Won-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • Copper Phthalocyanine (CuPc) thin films were fabricated on the silicon wafers by plasma activated evaporation method and structural analysis were carried out with various spectroscopies. The CuPc films had dense and smooth morphology and they also showed good mechanical properties and chemical resistance. The main molecular structure of the CuPc, which is the conjugated aromatic heterocyclic ring structure, was maintained even in the plasma process. However, metal-ligand (Cu-N) bands were deformed by the plasma process and the structure became amorphous especially at higher process pressures. Oxygen impurities were incorporated in the film and carboxyl functional groups were formed at the peripheral benzene ring. The structure and morphology of the films were dependent on the process pressure but relatively irrespective of the RF power.

  • PDF

Analysis of electrical properties of two-step annealed polycrystalline silicon thin film transistors (두 단계 열처리에 의해 제작된 다결정 실리콘 박막트랜지스터의 전기적 특성의 분석)

  • 최권영;한민구;김용상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.568-573
    • /
    • 1996
  • The amorphous silicon films deposited by low pressure chemical vapor deposition are crystallized by the various annealing techniques including low-temperature furnace annealing and two-step annealing. Two-step annealing is the combination of furnace annealing at 600 [.deg. C] for 24 h and the sequential furnace annealing at 950 [.deg. C] 1h or the excimer laser annealing. It s found that two-step annealings reduce the in-grain defects significantly without changing the grain boundary structure. The performance of the poly-Si thin film transistors (TFTs) produced by employing the tow-step annealing has been improved significantly compared with those of one-step annealing. (author). 13 refs., 6 figs., 1 tab.

  • PDF

Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives (Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성)

  • Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.303-308
    • /
    • 2018
  • Silicon/Carbon (Si/C) composite as anode materials for lithium-ion batteries was synthesized to find the effect of binders and an electrolyte additive. Si/C composites were prepared by two step method, including magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical performances of Si/C composites were investigated by charge/discharge, cyclic voltammetry and impedance tests. The anode electrode of Si/C composite with PAA binder appeared better capacity (1,899 mAh/g) and the capacity retention ratio (92%) than that of other composition coin cells during 40 cycles. Then, Vinylene carbonate (VC) was tested as an electrolyte additive. The influence of this additive on the behavior of Si/C anodes was very positive (3,049 mAh/g), since the VC additive is formed passivation films on Si/C surfaces and suppresses irreversible changes.

The Study of Formation of Ti-silicide deposited with Composite Target [II] (Composite Target으로 증착된 Ti-silicide의 현성에 관한 연구[II])

  • Choi, Jin-Seog;Paek, Su-Hyon;Song, Young-Sik;Sim, Tae-Un;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.191-197
    • /
    • 1991
  • The surface roughnesses of titanium silicide films and the diffusion behaviours of dopants in single crystal and polycrystalline silicon substrates durng titanium silicide formation by rapid thermal annealing(RTA) of sputter deposited Ti-filicide film from the composite $TiSi_{2.6}$ target were investigated by the secondary ion mass spectrometry(SIMS), a four-point probe, X-ray diffraction, and surface roughness measurements. The as-deposited films were amorphous but film prepared on single silicon substrate crystallized to the orthorhombic $TiSi_2$(C54 structure) upon rapid thermal annealing(RTA) at $800^{\circ}C$ for 20sec. There was no significant out-diffusion of dopants from both single crystal and polycrystalline silicon substrate into titanum silicide layers during annealing. Most of the implanted dopants piled up near the titanium silicide/silicon interface. The surface roughnesses of titanium silicide films were in the range between 16 and 22nm.

  • PDF

Characterization of hydrogenated nanocrystalline silicon thin films prepared with various negative DC biases (직류 바이어스를 이용한 나노결정 실리콘의 구조 및 광학적 특성)

  • Shim, Jae-Hyun;Cho, Nam-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.37-37
    • /
    • 2008
  • Hydrogenated nanocrystalline Si (nc-Si:H) thin films were prepared by plasma enhanced chemical vapor deposition (PECVD). The films were deposited with a radio frequency power of 100 W, while substrates were exposed to direct current (DC) biases in the range from 0 to -400 V. The effects of the DC bias on the formation of nanoscale Si crystallites in the films and on their optical characteristics were investigated. The size of the Si crystallites in the films ranges from ~ 1.9 to ~ 4.1 nm. The relative fraction of the crystallites in the films reached up ~ 56.5 % when the DC bias of -400 V was applied. Based on the variation in the structural, chemical, and optical features of the films with DC bias voltages, a model for the formation of nanostructures of the nc-Si:H films prepared by PECVD was suggested. This model can be utilized to understand the evolution in the size and relative fraction of the nanocrystallites as well as the amorphous matrix in the nc-Si:H films.

  • PDF