Browse > Article

Synthesis of Zirconium Oxides on silicon by Radio-Frequency Magnetron Sputtering Deposition  

Ma, Chunyu (State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology)
Zhang, Qingyu (State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology)
Publication Information
Journal of the Korean Vacuum Society / v.12, no.S1, 2003 , pp. 83-87 More about this Journal
Abstract
Zirconium oxide films have been synthesized by radio-frequency magnetron sputtering deposition on n-Si(001) substrate with metal zirconium target at variant $O_2$ partial pressures. The influences of $O_2$ partial pressures of the morphology, deposition rate, microstructure, and the dielectric constant of $ZrO_2$ have been discussed. The results show that deposition rate of $ZrO_2$ films decreases, the roughness, and the thickness of the native $SiO_2$ interlayer increases with the increase of $O_2$ partial pressure. $ZrO_2$ films synthesized at low $O_2$ partial pressure are amorphous and monoclinic polycrystalline in nanometer scale at low $O_2$ partial pressure. The relative dielectrics of $ZrO_2$ films are in the range of 12 to 25.
Keywords
radio-frequency magnetron sputtering deposition; $ZrO_2$ film; dielectric constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. S. Jeon, J. M. White, and D. L. Kwong, Appl. Phys. Lett. 78, 368 (2001)   DOI   ScienceOn
2 S. A. Campbell, H. S. Kim, D. C. Gilmer, B. He, T. Ma, and W. L. Gladfelter, IBM J. Res Develop. 43, 383 (1999)   DOI
3 M. Gurvitch, L. Manchanda, and J. M. Gibson, Appl. Phys. Lett. 51, 919 (1987)   DOI
4 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000)   DOI   ScienceOn
5 M. L. Green, E. P. Gusev, R. Degraeve, and E. Garfunkel, J. Appl. Phys. 90, 2057 (2001)   DOI   ScienceOn
6 S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett. 77, 2710 (2001)
7 J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, J. Appl. Phys. 89, 3920 (2001)   DOI   ScienceOn
8 R. Ludeke, M. T. Cuberes, and E. Cartier, Appl. Phys. Lett. 76, 2886 (2001)
9 E. P. Gusev, M Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000)   DOI   ScienceOn
10 M. Copel, M. Gribelyuk, and E. P. Gusev, Appl. Phys. Lett. 76, 436 (2000)   DOI   ScienceOn
11 D. Landheer, J. A. Gupta, G. I. Sproule, J. P. McCaffrey, M. J. Graham, K.-C. Yang, Z.-H. Lu, W. N. Lennard, and J. Electrochem. Soc. 148, G29 (2001)
12 J. A. Gupta, D. Landheer, J. P. McCaffrey, and G. I. Sproule, Appl. Phys. Lett. 78, 1718 (2001)   DOI   ScienceOn
13 M. Copel, E. Cartier, and F. M. Ross, Appl. Phys. Lett, 78, 1607 (2001)   DOI   ScienceOn
14 D. Buchanan, IBM J. Res. Develop. 43, 245 (1999)   DOI
15 W.-J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, Appl. Phys. Lett. 77, 3269 (2000)   DOI   ScienceOn
16 L. Kang, K. Qnishi, Y. Jeon, B. H. Lee, C. Kang, W.-J. Qi, R. Nieh, S. Gopalan, R. Choi, and J. C. Lee, IEDM Technical Digest 181 (2000)
17 G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. Urdahl, Appl. Phys. Lett. 73, 1517 (1998)   DOI   ScienceOn
18 C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, J. Appl. Phys. 83, 3323 (1998)   DOI   ScienceOn
19 M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M. Poppeler, Appl. Phys. Lett. 78, 2670 (2001)   DOI   ScienceOn