• Title/Summary/Keyword: Amorphous silica

Search Result 146, Processing Time 0.029 seconds

An Investigation of the Transformation Sequence from Kaolinite to Mullite (카올리나이트의 상전이반응 과정 연구)

  • 이수정;김윤중;문희수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.32-44
    • /
    • 1998
  • The transformation sequence of kaolinite to mullite is examined with new electron diffraction data obtained mainly by an energy filtering transmission electron microscope. Kaolinite is transformed finally into mullite and cristobalite through several steps of continuous reactions by heating, which result in metakaolinite, microcrystalline spinel-type phase and amorphous silica. Metakaolinite maintains a short-range order in its structure ven at $920^{\circ}C$. Spinel phase results from a topotactictransformation of metakaolinite apart from the breakdown of metakaolinite structure. the first strong exothermic peak on DTA curve is mainly due to the extraction of amorphous silica from metakaolinite and the gradual nucleation of mullite. Metakaolinite decomposes around$ 940^{\circ}C$ to mullite that doesn't show a clear crystallographic relationship to the parent metakaolinite structure. However, spinel phase produced previously is maintained. The initially formed spinel and mullite phases are suggested to be Al-rich, but progressively gain Si in their structures at higher temperatures. Spinel phase decomposes completely through a second weak exothermic reaction promoting the growth of mullite, and crystallization of amorphous silica to cristobalite.

  • PDF

Density functional study of silanization of the silica surface (실리카 표면의 실란화에 대한 범밀도 함수 계산)

  • Kang, Jee-Won;Lee, Yoon-Sup
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.521-526
    • /
    • 2007
  • Density functional calculations have been performed for the reactions of perfluoroalkylsilane and alkylsilane with silica surfaces. The (100) and (111) surfaces of ${\beta}-cristobalite$ are used as two possible models of the hydroxylated amorphous silica surface. This is the crystalline phase of silica with density and refractive index closest to those of amorphous silica. Moreover, two ${\beta}-cristobalite$ surfaces have the two types of silanol groups, namely the single silanols and the geminal silanols. We investigate the possible adsorption structure and formation energy of perfluoroalkylsilane and alkylsilane molecules with two type of silanol groups. The results will be compared with cluster and slab model.

  • PDF

Effect of Particle Size on the Atomic Structure of Amorphous Silica Nanoparticles: Solid-state NMR and Quantum Chemical Calculations (비정질 규산염 나노입자의 입자 크기에 따른 원자 구조 변화 : 고상 핵자기공명 분석 및 양자화학계산 연구)

  • Kim, Hyun-Na;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.321-329
    • /
    • 2008
  • Amorphous silica nanoparticles are among the most fundamental $SiO_2$ compounds, having implications in diverse geological processes and technological applications. Here, we explore structural details of amorphous silica nanoparticles with varying particle sizes (7 and 14 nm) using $^{29}Si$ and $^{1}H$ MAS NMR spectroscopy together with quantum chemical calculations to have better prospect for their size-dependent atomic structures. $^{29}Si$ MAS NMR spectra at 9.4 T resolve $Q^2,\;Q^3$ and $Q^4$ species at -93 ppm, -101 ppm, -110 ppm, respectively. The fractions of $Q^2,\;Q^3,\;O^4$ species are $7{\pm}1%,\;27{\pm}2%$, and $66{\pm}2%$ for 7 nm amorphous silica nanoparticles and $6{\pm}1%,\;21{\pm}2%$, and $73{\pm}2%$ for 14 nm amorphous silica nanoparticles. Whereas it has been suggested that $Q^2$ and $Q^3$ species exist on particles surfaces, the difference in $Q^{2}\;+\;Q^{3}$ fraction in both 7 and 14 nm particles is not significant, suggesting that $Q^2$ and $Q^3$ species could exist inside particles. $^{1}H$ MAS NMR spectra at 11.7 T shows diverse hydrogen environments, including physisorbed water, hydrogen bonded silanol, and non-hydrogen bonded silanol with varying hydrogen bond strength. The hydrogen contents in the 7nm silica nanoparticles (including water and hydroxyl groups) are about 3 times of that of 14 nm particles. The larger chemical shills for proton environments in the former suggest stronger hydrogen bond strength. The fractions of non-hydrogen bonded silanols in the 14 nm amorphous silica nanoparticles are larger than those in 7 nm amorphous silica nanoparticles. This observation suggests closer proximity among hydrogen atoms in the nanoparticles with smaller diameter. The current results with high-resolution solid-state NMR reveal previously unknown structural details in amorphous silica nanoparticles with particle size.

Structural Analysis & Phase Transition of Amorphous Silica Nanoparticles Using Energy-Filtering TEM (EF-TEM을 이용한 비정질 실리카 나노입자의 구조 및 상전이 연구)

  • Park, Jong-Il;Kim, Jin-Gyu;Song, Ji-Ho;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • In this study, we introduce the structural analysis of amorphous silica nanoparticles by EF-TEM electron diffraction and in-situ heating experiments. Three diffused rings were observed on the electron diffraction patterns of initial silica nanoparticles, while crystalline spot patterns were gradually appeared during the insitu heating process at $900^{\circ}C$. These patterns indicate the basic unit of $SiO_4$ tetrahedra consisting amorphous silica and gradual crystallization into the ideal layer structure of tridymite by heating. Under high vacuum condition in TEM, SiO nanoparticles were redeposited on the carbon grid after evaporation of SiO gas from $SiO_2$ above $850^{\circ}C$ and the remaining $SiO_2$ were crystallized into orthorhombic tridymite, consistent with ex-situ heating results in furnace at $900^{\circ}C$.

Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin (TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF

Durability of Nozzle Materials for Strip Casting of Amorphous Alloys (비정질합금 박판 제조용 노즐 재료의 내구성평가)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.267-273
    • /
    • 2011
  • Erosion and thermal shock resistance of several refractory materials have been investigated, which are expected to be used as nozzles in a planar flow casting equipment for amorphous alloys. The test was conducted on five materials; graphite, boron nitride, fused silica, alumina and zirconia. Test specimens were preheated and dipped into the melt of carbon steel and amorphous alloys. Some test specimens were rotated to develop high erosion and to shorten the test periods. Fused silica and boron nitride specimens showed the excellent erosion and thermal shock resistance irrespective of the kind of melt and melting atmosphere.

Preparation of Alumina and Amorphous Silica from Clay Minerals (점토광물로부터 알루미나 및 비정질 실리카 제조에 관한 연구)

  • 박희찬;조원제;강효경;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • High purity alumina and amorphous silica were prepared from Ha-dong kaolin by means of appliance of sulfuric acid. The effect of sulfuric acid concentration, reaction temperature and reaction time on the formation of aluminum sulfate was investigated. The precipitation conditions ofaluminum sulfate from the sulfuric acid solution with ethanol and ammonium hydroxide were deteremined. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum oxide powder was 85.0 percent. Alumina powder was prepared by calcination of the precipitates, and its purity was 99.0 percent.

  • PDF

Effect of Silica Content on the Dielectric Properties of Epoxy/Crystalline Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.322-325
    • /
    • 2012
  • Crystalline silica was synthesized by annealing amorphous silica at $1,300^{\circ}C$ or $1,400^{\circ}C$ for various times, and the crystallinity was estimated by X-ray diffraction (XRD) analysis. In order to prepare a low dielectric material, epoxy/crystalline silica composites were prepared, and the effect of silica content on the dielectric properties was studied under various functions of frequency and ambient temperature. The dielectric constant decreased with increasing crystalline silica content in the epoxy composites, and it also decreased with increasing frequency. At 120 Hz, the value of 5 wt% silica decreased by 0.25 compared to that of 40 wt% silica, and at 23 kHz, the value of 5 wt% silica decreased by 0.23 compared to that of 40 wt% silica. The value increased with increasing ambient temperature.

Effect of Specific Surface Area on the Reaction of Silicon Monoxide with Porous Carbon Fiber Composites

  • Park, Min-Jin;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.245-248
    • /
    • 1998
  • Porous carbon fiber composites (CFCs) having variable specific surface area ranging 35~1150 $\m^2$/g were reacted to produce silicon carbide fiber composites with SiO vapor generated from a mixture of Si and $SiO_2$ at 1673 K for 2 h under vacuum. Part of SiO vapor generated during conversion process condensed on to the converted fiber surface as amorphous silica. Chemical analysis of the converted CFCs resulting from reaction showed that the products contained 27~90% silicon carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific carbide, 7~18% amorphous silica and 3~63% unreacted carbon, and the composition depended on the specific surface area of CFCs. CFC of higher specific surface area yielded higher degree of conversion of carbon to silicon and conversion products of lower mechanical strength due to occurrence of cracks in the converted caron fiber. As the conversion of carbon to silicon carbide proceeded, pore size of converted CFCs increased as a result of growth of silicon carbide crystallites, which is also linked to the crack formation in the converted fiber.

  • PDF

Size, Shape, and Crystal Structure of Silica Particles Generated as By-products in the Semiconductor Workplace (반도체 작업환경 내 부산물로 생성되는 실리카 입자의 크기, 형상 및 결정 구조)

  • Choi, Kwang-Min;Yeo, Jin-Hee;Jung, Myung-Koo;Kim, Kwan-Sick;Cho, Soo-Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • Objectives: This study aimed to elucidate the physicochemical properties of silica powder and airborne particles as by-products generated from fabrication processes to reduce unknown risk factors in the semiconductor manufacturing work environment. Materials and Methods: Sampling was conducted at 200 mm and 300 mm semiconductor wafer fabrication facilities. Thirty-two powder and airborne by-product samples, diffusion(10), chemical vapor deposition(10), chemical mechanical polishing(5), clean(5), etch process(2), were collected from inner chamber parts from process and 1st scrubber equipment during maintenance and process operation. The chemical composition, size, shape, and crystal structure of silica by-product particles were determined by using scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy, and x-ray diffractometry. Results: All powder and airborne particle samples were composed of oxygen(O) and silicon(Si), which means silica particle. The by-product particles were nearly spherical $SiO_2$ and the particle size ranged 25 nm to $50{\mu}m$, and most of the particles were usually agglomerated within a particle size range from approximately 25 nm to 500 nm. In addition, the crystal structure of the silica powder particles was found to be an amorphous silica. Conclusions: The silica by-product particles generated from the semiconductor manufacturing processes are amorphous $SiO_2$, which is considered a less toxic form. These results should provide useful information for alternative strategies to improve the work environment and workers' health.