• 제목/요약/키워드: Amorphous matrix

검색결과 230건 처리시간 0.027초

벌크형 비정질 Zr계 합금의 결정화 열처리에 따른 동적변형 거동 (Dynamic Deformation Behavior of Zr-Based Bulk Amorphous Alloy after Annealing Treatments)

  • 장재준;이병주;황진일;박익민;조경목;조영래
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.181-185
    • /
    • 2004
  • The mechanical properties of a bulk amorphous alloy ($Zr_{41.2}$ $Ti_{13.8}$ /$Cu_{10}$ $Ni_{10}$ $Be_{22.5}$ /at.%) before and after an annealing treatment were investigated. For the bulk amorphous alloy, the compressive strength was about 2.0 GPa, irrespective of the strain rates in the range of $10^{-4}$ to $10^3$$ sec^{-1}$ . Fine-sized nanocrystalline particles (10~100 nm) were precipitated homogeneously in the bulk amorphous matrix after the annealing treatments. Compared to the bulk amorphous materials, these composite materials, composed of the nanocrystalline phases and a bulk amorphous matrix had much different mechanical properties. The strength and strain of coposite materials measured by a compressive test showed a peak-maximum values at 7 vol.% of the nanocrystalline phases. The values in higher volume fraction of the crystalline phases in the amorphous matrix were decreased, as measured by both quasi-static and high strain rate. The decrease in fracture strength is due to presence of the dispersed large-crystalline phases in the amorphous matrix.

액상가압공정으로 제조된 탄탈륨 연속섬유 강화 비정질 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성확
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.403-411
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by liquid pressing process, and their microstructures and mechanical properties were investigated. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. The consequential observation of the tensile deformation and fracture behavior of the composite showed the formation of multiple shear bands and multiple necking, crack deflection in the amorphous matrix, and obstruction of crack propagation by ductile fibers, thereby resulting in very high tensile elongation of 7.2%. These findings suggested that the liquid pressing process was useful for the development of amorphous matrix composites with improved ductility.

Enhanced plasticity in a bulk amorphous matrix composite

  • Lee, Jae-Chul;Kim, Yu-Chan;Ahn, Jae-Pyoung;Kim, Hyoung-Seop
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.54-54
    • /
    • 2003
  • We have developed a Cu-based bulk amorphous composite reinforced with a micron-sized crystalline phase, the (Cu60Zr30Ti10)95Ta5 amorphous matrix composite. The composite demonstrates the ultimate strength of 2332 MPa with a dramatically enhanced fracture strain of 15.3 %. Macroscopic observation of the fractured (Cu60Zr30Ti10)95Ta5 amorphous matrix composite showed the development of multiple shear bands along with numerous branching and deflection of shear bands. Microscopic observation on the amorphous matrix of the composite showed that cracks propagate through the residual amorphous matrix located between nanocrystallites, which had formed during deformation. Simulations based on finite element method were conducted to understand the formation mechanisms of multiple shear bands, the initiation site of shear bands, and interaction of shear bands with crystalline particles. Other microscopic fracture mechanism responsible for the enhanced plasticity was discussed.

  • PDF

Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성 (Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders)

  • 김택수;이진규;김휘준;배정찬
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

Crystallization Behavior of Al-Ni-Y Amorphous Alloys

  • Na, Min Young;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제43권3호
    • /
    • pp.127-131
    • /
    • 2013
  • The crystallization behavior in the $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$amorphous alloys has been investigated. As-quenched $Al_{87}Ni_3Y_{10}$ amorphous phase decomposes by simultaneous formation of Al and intermetallic phase at the first crystallization step, while as-quenched $Al_{88}Ni_3Y_9$ amorphous phase decomposes by forming Al nanocrystals in the amorphous matrix. The density of Al nanocrystals is extremely high and the size distribution is homogeneous. Such a microstructure can result from rapid explosion of the nucleation event in the amorphous matrix or growth of the preexisting nuclei embedded in the as-quenched amorphous matrix. The final equilibrium crystalline phases and their distribution at 873 K are exactly same in both $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$ alloys.

Synthesis of Amorphous Matrix Nano-composite in Al-Cu-Mg Alloy

  • Kim, Kang Cheol;Park, Sung Hyun;Na, Min Young;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제44권3호
    • /
    • pp.105-109
    • /
    • 2014
  • The microstructure of as-quenched $Al_{70}Cu_{18}Mg_{12}$ alloy has been investigated in detail using transmission electron microscopy. Al nano-crystals about 5 nm with a high density are distributed in the amorphous matrix, indicating amorphous matrix nano-composite can be synthesized in Al-Cu-Mg alloy. The high density of Al nano-crystals indicates very high nucleation rate and sluggish growth rate during crystallization possibly due to limited diffusion rate of solute atoms of Cu and Mg during solute partitioning. The result of hardness measurement shows that the mechanical properties can be improved by designing a nano-composite structure where nanometer scale crystals are embedded in the amorphous matrix.

액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동 (Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성학
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF

액상가압공정으로 제조된 탄탈륨 연속섬유 강화 Zr계 비정질 복합재료의 기계적 성질의 이방성 (Anisotropic Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 이규홍;이상복;이상관;이성학
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.542-549
    • /
    • 2009
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by the liquid pressing process, and their anisotropic mechanical properties were investigated by tensile and compressive tests of $0^{\circ}$(longitudinal)-, $45^{\circ}$-, and $90^{\circ}$(transverse)-orientation specimens. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. When the fiber direction was not matched with the loading direction, the reduction of the strength and ductility was not serious because of excellent fiber/matrix interfacial strength. Observation of the anisotropic deformation and fracture behavior showed the formation of multiple shear bands, the obstruction of crack propagation by fibers, and the deformation of fibers themselves, thereby resulting in tensile elongation of 3%~4% and compressive elongation of 15%~30%. These results suggest that the liquid pressing process was useful for the development of amorphous matrix composites with excellent ductility and anisotropic mechanical properties.

텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam)

  • 손창영;이상복;이상관;김충년;이성학
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.109-115
    • /
    • 2010
  • In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.