• Title/Summary/Keyword: Amorphous carbon film

Search Result 142, Processing Time 0.03 seconds

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation (분자 동역학 전산모사에 의한 비정질 탄소 필름의 합성거동 연구)

  • 이승협;이승철;이규환;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.

Field Electron Emission from Amorphous Carbon Thin Film Grown Using Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장된 Amorphous carbon 각막의 전계전자방출)

  • ;;K. Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.234-240
    • /
    • 2001
  • Using RF magnetron sputtering, amorphous carbon(a-C) thin films as electron filed emitter were fabricated. these a-C thin films were deposited on Si(001) substrate at several temperatures. The field electron emission property of these a-C thin films was estimated by a diode technique. As the result, we observed that the field emission properties of the films were changed singnificantly with the substrate temperature and structural features of a-C film. The field emission properties were promoted by higher substrate temperatures. Furthermore N-doped a-C film exhibits more field emission property than that of undoped a-C film. These results are explained as change of surface morphology and structural properties of a-C film.

  • PDF

Deposition of Diamond Film by Hydrogen-oxyacetylen Combustion Flame

  • Ko, Chan-Kyoo;Park, Dong-Wha
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1998
  • Diamond film was deposited on Mo substrate at atmospheric pressure using combustion flame apparatus with the addition of H2. At a temperature above 100$0^{\circ}C$, parts of the film were converted into graphites and these were etched by hydrogen atoms. With increasing $C_2H_2/O_2$ ratio, the nucleation density of the film increased. But the greater part of the film was formed with cauliflower-shaped amorphous carbon. These amorphous carbn were crystallized etching amorphous carbon.

  • PDF

Effects of Deposition Conditions on the Properties of Amorphous Carbon Nitride Thin Films by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 특성에 미치는 증착변수의 영향)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.150-154
    • /
    • 2003
  • Amorphous carbon nitride films were deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition technique (PECVD) using $CH_4$and $N_2$as reaction gases. The growth and film properties were investigated while the gas ratio and the working pressure were changed systematically. At 1 Torr working pressure, an increase in the $N_2$partial pressure results in a significant increase of the deposition rate as well as an apparent presence of C ≡N bonding, while little affecting the microstructure and amorphus nature of the films. In the case of changing the working pressure at a fixed $N_2$partial pressure of 98%, a film grown at a medium pressure of $1${\times}$10^{-2}$ Torr shows the most prominent C=N bonding nature and photoluminescent property.

NITROGEN DOPED DIAMOND LIKE CARBON FILM SYNTHESIZED BY MICROWAVE PLASMA CVD

  • Urao, Ryoichi;Hayatsu, Osamu;Satoh, Toshihiro;Yokota, Hitoshi
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.549-555
    • /
    • 1996
  • Diamond Like Carbon film is amorphous film which is considered to consist of three coordinate graphite structure and tetrahedron coordinate diamond structure. Its hardness, thermal conductivity and chemical stability are nearly to one of diamond. It is well known to become semi-conductor by doping of inpurity. In this study Diamond Like Carbon film was synthesized by Microwave Plasma CVD in the gas mixture of hydrogen-methan-nitrogen and doped of nitrogen on the single-crystal silicon or silica glass. The temperature of substrate and nitrogen concentration in the gas mixture had an effect on the bonding state, structural properties and conduction mechanism. The surface morphology was observed by Scanning Electron Microscope. The strucure was analyzed by laser Raman spectrometry. The bonding state was evaluated by electron spectroscopy. Diamond Like Carbon film synthesized was amorphous carbon containing the $sp^2$ and $sp^3$ carbon cluster. The number of $sp^2$ bonding increased as nitrogen concentration increased from 0 to 40 vol% in the feed gas at 1233K substrate temperature and at $7.4\times10^3$ Pa. Increase of nitrogen concentration made Diamond Like Carbon to be amorphous and the doze of nitragen could be controlled by nitrogen concentration of feed gas.

  • PDF

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.

Nano-Mechanical and Tribological Characteristics of Ultra-Thin Amorphous Carbon Film Investigated by AFM

  • Chung, Koo-Hyun;Lee, Jae-Won;Kim, Dae-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1772-1781
    • /
    • 2004
  • The mechanical as well as tribological characteristics of coating films as thin as a few nm become more crucial as applications in micro-systems grow. Especially, the amorphous carbon film has a potential to be used as a protective layer for micro-systems. In this work, quantitative evaluation of nano-indentation, scratching, and wear tests were performed on the 7nm thick amorphous carbon film using an Atomic Force Microscope (AFM). It was shown that AFM-based nano-indentation using a diamond coated tip can be feasibly utilized for mechanical characterization of ultra-thin films. Also, it was found that the critical load where the failure of the carbon film occurred was about 18${\mu}$N by the ramp load scratch test. Finally, the wear experimental results showed that the quantitative wear rate of the carbon film ranged 10$\^$-9/~10$\^$-8/ ㎣ /N cycle. These experimental methods can be effectively utilized for a better understanding the mechanical and tribological characteristics at the nano-scale.

Atomic structure of amorphous carbon deposited by various incidence angles -MD simulation study

  • Jo, Min-Ung;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.52-52
    • /
    • 2010
  • Amorphous carbon films have a variety of potential applications. In most such applications film properties are crucial and highly dependent on the film growth conditions. We here investigate the atomic structure of the films, which is generated at various incidence angles, using the classical molecular dynamics. Varying incidence angle of the deposited carbon atoms, different level of sp hybridization and porosity of the film are captured in our model. As the incidence angle becomes glancing, subplantation of the deposited carbon in vertical direction is significantly reduced, rather bouncing back of the incident carbon with slight modification of surface structure is mainly occurred at the early stage of the film growth. As the surface becomes rougher, shadowing effect at these glancing incidences also becomes more significant, which tends to cause asymmetrical and columnar structure. We describe incidence angle dependence of the evolution of the atomic structure of the film and its corresponding properties.

  • PDF

Water vapor barrier properties of polymer-like amorphous carbon deposited polyethylene naphthalate film

  • Kim, Jeong-Yong;Park, Gyu-Dae;Song, Ye-Seul;Lee, Hui-Jin;Vu, Minh Canh;Kim, Seong-Ryong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.303.1-303.1
    • /
    • 2016
  • Polymer-like amorphous carbon films were deposited on polyethylene naphthalate (PEN) substrate by plasma-enhanced chemical vapor deposition (PECVD) and their water vapor transmission rates (WVTR) were tested. propane was used as precursors. To make a polymer-like amorphous carbon film the deposition rate, surface roughness, light transmittance, and WVTR of the films were characterized as a function of the precursor feed ratio and plasma power. The water vapor transmission rates of bare PEN film and single layer PAC on PEN substrate were 6.95 g/m2/day and 0.3 g/m2/day, respectively. The superior property the water vapor permeability of thin layers of PAC was attributed to uniform coverage and good adhesion between PAC film and PEN substrate.

  • PDF

Effects of Thermal Annealing on the Properties of Amorphous Carbon Nitride Films Deposited by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 물성에 미치는 열처리 효과)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2003
  • Amorphous carbon nitride films deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition (PECVD) technique using CH$_4$and $N_2$as reaction gases were thermally annealed at various temperatures under$ N_2$atmosphere, then their physical properties were investigated particularly as a function of annealing temperature. Above $600^{\circ}C$ a small amount of crystalline $\beta$-$C_3$$N_4$ phase evolves, while the film surface becomes very rough due to agglomeration of fine grains on the surface. As the annealing temperature increases, both the hardness and the $sp^3$ bonding nature are enhanced. In contrast to our expectation, higher annealing temperature results in a relatively higher friction mainly due to big increase in roughness at that temperature.