• 제목/요약/키워드: Amorphous carbon

검색결과 452건 처리시간 0.025초

비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성 (Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method)

  • 박용섭;조형준;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.

알콕사이드와 사이알론 합성에 관한 연구 (A Study on the Synthesis of Alkoxides and Sialon)

  • 하호;이희철
    • 대한화학회지
    • /
    • 제32권3호
    • /
    • pp.267-275
    • /
    • 1988
  • $Al(OC_3H_7)_3$$Si(OC_2H_5)_4$, 알콕사이드를 합성하고 그 물질을 각각 또는 혼합가수분해하여 $Al_2O_3,\;SiO_2,\;Al_2O_3-SiO_2$계의 물질을 얻고 $Al_2O_3-SiO_2$계에 환원제로서 carbon black을 혼합하여 $N_2$분위기에서 환원질화반응시켜 고순도의 ${\beta}-sialon$ 초미분말을 합성하였다. 가수분해 과정에서는 반응조건이 가수분해반응에 미치는 영향을 알아보았고, 환원질화반응 과정에서는 중간생성물을 분석하여 반응경로를 추정하고 ${\beta}-sialon$의 생성반응에 대한 동력학적 고찰을 하였다.

  • PDF

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.

망상형 탄소폼의 열처리 온도가 기계적 물성에 미치는 영향 (Effects of Heat-treatment Temperature on Mechanical Properties of Reticulated Carbon Foams)

  • 한윤수;이성민;김형태
    • 한국세라믹학회지
    • /
    • 제49권3호
    • /
    • pp.236-240
    • /
    • 2012
  • The reticulated carbon foam have been used for their excellent properties in terms of thermal management which is getting important in industrial field currently. In this study, we measure the mechanical properties of the reticulated carbon foam which is heat-treated at various temperature from the prepared low-density phenol foam. Simultaneously, we observe microstructures with high resolution transmission microscope and measure the residual oxygen content of carbon foams to figure out the relationship between the apparent change of properties such as weight loss and linear shrinkage during heat treatment. In conclusion, the carbon foam heat-treated at $1400^{\circ}C$ shows the highest strength, and the mechanical behavior is believed to be strongly related to the creation of nano-size graphite crystals from the amorphous carbon during heat treatment. On the other hand, it is turned out that the weight loss occurred at the temperature under $1400^{\circ}C$ comes from the elimination of oxygen in the form of $CO_2$ or CO, but no evidence is found on weight loss mechanism at the temperature above $1400^{\circ}C$.

Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors

  • Gopiraman, Mayakrishnan;Saravanamoorthy, Somasundaram;Kim, Seung-Hyun;Chung, Ill-Min
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.73-81
    • /
    • 2017
  • Interconnected meso/microporous activated carbons were prepared from pumpkin seeds using a simple chemical activation method. The porous carbon materials were prepared at different temperatures (PS-600, PS-700, PS-800, and PS-900) and demonstrated huge surface areas ($645-2029m^2g^{-1}$) with excellent pore volumes ($0.27-1.30cm^3g^{-1}$). The well-condensed graphitic structure of the prepared activated carbon materials was confirmed by Raman and X-ray diffraction analyses. The presence of heteroatoms (O and N) in the carbon materials was confirmed by X-ray photoemission spectroscopy. High resolution transmission electron microscopic images and selected area diffraction patters further revealed the porous structure and amorphous nature of the prepared electrode materials. The resultant porous carbons (PS-600, PS-700, PS-800, and PS-900) were utilized as electrode material for supercapacitors. To our delight, the PS-900 demonstrated a maximum specific capacitance (Cs) of $303F\;g^{-1}$ in 1.0 M $H_2SO_4 $ at a scan rate of 5 mV. The electrochemical impedance spectra confirmed the poor electrical resistance of the electrode materials. Moreover, the stability of the PS-900 was found to be excellent (no significant change in the Cs even after 6000 cycles).

Effect of Carbon-coated Silicon/Graphite Composite Anode on the Electrochemical Properties

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1965-1968
    • /
    • 2008
  • The effects of carbon-coated silicon/graphite (Si/Gr.) composite anode on the electrochemical properties were investigated. The nanosized silicon particle shows a good cycling performance with a reasonable value of the first reversible capacity as compared with microsized silicon particle. The carbon-coated silicon/graphite composite powders have been prepared by pyrolysis method under argon/10 wt% propylene gas flow at $700{^{\circ}C}$ for 7 h. Transmission electron microscopy (TEM) analysis indicates that the carbon layer thickness of 5 nm was coated uniformly onto the surface silicon powder. It is confirmed that the insertion of lithium ions change the crystalline silicon phase into the amorphous phase by X-ray diffraction (XRD) analysis. The carbon-coated composite silicon/graphite anode shows excellent cycling performance with a reversible value of 700 mAh/g. The superior electrochemical characteristics are attributed to the enhanced electronic conductivity and low volume change of silicon powder during cycling by carbon coating.

Chemical Modification of Carbon Nanotubes and Preparation of Polystyrene/Carbon Nanotubes Composites

  • Ham, Hyeong-Taek;Koo, Chong-Min;Kim, Sang-Ouk;Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.384-390
    • /
    • 2004
  • Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3:1 mixture of concentrated sulfuric acid and nitric acid. During these purification and cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octa-decylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The cut SWNTs did not disperse in organic solvents, but the octadecylamine-grafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or polystyrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석 (Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite)

  • 최재홍;오필건
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.58-63
    • /
    • 2022
  • 흑연은 낮은 탈/리튬화 전압, 372 mAh/g의 높은 이론 용량, 낮은 가격 및 긴 수명 특성을 가져 지난 30년 동안 리튬이 온전지 음극 재료로 활용되었다. 최근 무기 고체 재료로 구성되어 높은 안정성을 가지는 전고체 리튬이온전지는 전기자동차 및 차세대 에너지 저장 장치로 엄청난 주목을 받고 있지만, 전고체 리튬이온전지 시스템에 잘 구동되는 흑연 연구는 부족한 실정이다. 그래서 우리는 탄소재료 표면에 존재하여 저항층으로 작용하는 비정질 탄소를 흑연으로부터 제거하여 흑연의 전기전도도 향상을 통해 황화물계 전고체 전지 음극 흑연 재료의 성능 향상을 유도했다. 400, 500 및 600 ℃ 공기 열처리된 흑연의 X-ray diffraction (XRD) 분석 결과, (002) 피크 반치폭(FWHM)이 bare 흑연보다 줄어들어 열처리 후 흑연의 결정성이 향상됨을 보였다. 또한 열처리 후 흑연의 결정성이 증가할수록 방전 용량, 초기 쿨롱효율(ICE) 및 수명 특성이 증가함을 확인했다. 500 ℃ 공기 열처리 한 흑연의 경우 331.1 mAh/g 및 ICE 86.2%와 10사이클 수명 측정 후 92.7%의 높은 용량 유지율을 나타내었다.

Self-Organized Synthesis and Mechanism of SnO2@Carbon Tube-Core Nanowire

  • Luo, Minting;Ma, Yong-Jun;Pei, Chonghua;Xing, Yujing;Wen, Lixia;Zhang, Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2535-2538
    • /
    • 2012
  • $SnO_2@carbon$ tube-core nanowire was synthesized via a facile self-organized method, which was in situ by one step via Chemical Vapor Deposition. The resulting composite was characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The diameter of the single nanowire is between 5 nm and 60 nm, while the length would be several tens to hundreds of micrometers. Then X-ray diffraction pattern shows that the composition is amorphous carbon and tin dioxide. Transmission electron microscope images indicate that the nanowire consists of two parts, the outer carbon tube and the inner tin dioxide core. Meanwhile, the possible growth mechanism of $SnO_2@carbon$ tube-core nanowire is also discussed.