• Title/Summary/Keyword: Ammonia emission

Search Result 281, Processing Time 0.028 seconds

Low-temperature synthesis of nc-Si/a-SiNx: H quantum dot thin films using RF/UHF high density PECVD plasmas

  • Yin, Yongyi;Sahu, B.B.;Lee, J.S.;Kim, H.R.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.341-341
    • /
    • 2016
  • The discovery of light emission in nanostructured silicon has opened up new avenues of research in nano-silicon based devices. One such pathway is the application of silicon quantum dots in advanced photovoltaic and light emitting devices. Recently, there is increasing interest on the silicon quantum dots (c-Si QDs) films embedded in amorphous hydrogenated silicon-nitride dielectric matrix (a-SiNx: H), which are familiar as c-Si/a-SiNx:H QDs thin films. However, due to the limitation of the requirement of a very high deposition temperature along with post annealing and a low growth rate, extensive research are being undertaken to elevate these issues, for the point of view of applications, using plasma assisted deposition methods by using different plasma concepts. This work addresses about rapid growth and single step development of c-Si/a-SiNx:H QDs thin films deposited by RF (13.56 MHz) and ultra-high frequency (UHF ~ 320 MHz) low-pressure plasma processing of a mixture of silane (SiH4) and ammonia (NH3) gases diluted in hydrogen (H2) at a low growth temperature ($230^{\circ}C$). In the films the c-Si QDs of varying size, with an overall crystallinity of 60-80 %, are embedded in an a-SiNx: H matrix. The important result includes the formation of the tunable QD size of ~ 5-20 nm, having a thermodynamically favorable <220> crystallographic orientation, along with distinct signatures of the growth of ${\alpha}$-Si3N4 and ${\beta}$-Si3N4 components. Also, the roles of different plasma characteristics on the film properties are investigated using various plasma diagnostics and film analysis tools.

  • PDF

Quantitative Analysis of Trace Metals in Lithium Molten Salt by ICP-AES (ICP-AES를 이용한 리튬 용융염내의 미량 금속성분원소 정량에 관한 연구)

  • Kim, Do-Yang;Pyo, Hyung-Yeal;Park, Yong-Joon;Park, Yang-Soon;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • The quantitative analysis of various trace metals including fission products in lithium molten salts has been performed using a inductively coupled plasma atomic emission spectrometer (ICP-AES). The spectral interferences of lithium content, 500, 1,000 and 2,000 mg/L, in the sample solution were investigated using an optimum wavelength for the respective metal species. As a result, the line intensities for Y, Nd, Sr, and La had no influences from the lithium content up to 2,000 mg/L, while Mo, Ba, Ru, Pd, Rh, Zr and Ce showed spectral interferences of 10% to 50%. The group separation of metals from lithium in the molten salts solution was carried out by adding ammonia water into the solution. The recovery of Ru, Y, Rh, Zr, Nd, Ce, La and Eu was found to be over 90%, while Mo, Ba, Pd, and Sr provided low recovery percentages.

  • PDF

Reduction of Sulfur Compounds Produced from Swine Manure, Using Brevundimonas diminuta (Brevundimonas diminuta를 이용한 돈분뇨에서 발생되는 황화합물의 저감)

  • Oh, Min-Hwan;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.257-264
    • /
    • 2017
  • Mixed substrate oil cakes are known to emit sulfides, ammonia, and amines. Microorganisms capable of removing odorous gases related to these sulfur compounds were isolated from colonies enriched in vials containing oil cakes and water. Activity tests for hydrogen sulfide and methyl mercaptan reduction were performed to measure the sulfide reduction ratio of the isolates. Control groups were prepared with 0.25 g oil cakes and 10 ml water in a 100-ml vial without inoculation. The experimental groups were prepared similarly, albeit with an inoculum. Hydrogen sulfide removal efficiency of >90% was observed for an isolate, which was identified as Brevundimonas diminuta by 16S rDNA sequence analysis. The sequence was deposited in the Korean Collection for Type Cultures under the accession number KCTC11724BP. B. diminuta could remove up to 200 ppmv standard hydrogen sulfide in 24 hours and demonstrated a maximum hydrogen sulfide and methyl mercaptan removal efficiency of 100% at 453 ppmv and 98 ppmv, respectively, in vial tests. Furthermore, B. diminuta cells in 20% (v/w) medium showed removal efficiency of >85% for sulfur compounds in an odor emission chamber for swine manure.

Application of Poultry Industry Using Methods of Environmental Management - A Study on Decreasing Soluble Metals from Poultry Litter with Chemical Additives - (환경경영 기법을 이용한 가금산업에 적용(I) - 화학제재를 첨가한 깔짚으로부터 수용성 중금속 저감에 관한 연구를 중심으로 -)

  • Choi, In-Hag;Choi, Sun;Choi, Jung-Hoon
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1437-1442
    • /
    • 2009
  • Recent studies have shown that alum addition to litter results in many environmental and economic advantages, such as reductions in metal runoff, lower ammonia emission and improved poultry performance. However, no research has been conducted to evaluate the effects of different types of alum on soluble metals in poultry litter. The objective of this study was conducted to investigate changes in soluble metal from poultry litter with different types of aluminum sulfate (alum) under laboratory condition. The treatments used in this study, which were mixed in the upper 1 cm of litter or sprayed onto the litter surface, were 4 g alum, 8 g alum, 8.66 g liquid alum, 17.3 g liquid alum, 11.2 g A7 (high acid alum), and 22.4 g A7 (high acid alum)/100 g litter. Applying different types of alum to poultry litter reduced (P<0.05) concentrations of soluble Fe (9 to 54%), Cu (9 to 49%) and Zn (11 to 40%), relative to untreated litter, whereas it increased Ca and Mg (P<0.05). Mean soluble Fe and Cu levels in poultry litter from different types of alum decreased in the order: 22.4 g A7 (54% and 49%) > 17.3 g liquid alum (48% and 42%) > 8 g alum (48% and 31%) > 4 g alum (28% and 10%) > 8.6 g liquid alum (10% and 9%) > 11.2 g A7 (8.6% and 9%). Additionally, the high reduction in soluble Zn concentration was 4 g alum (40%), followed by 8 g alum (26%), 22.4 g A7 (25%), 17.3 g liquid alum (23%), 8.66 g liquid alum (18%), and 11.2 g A7 (11%), respectively. In conclusion, the current studies suggest that treating poultry litter with different types of alum can be applied to reduce soluble metal (Fe, Cu, and Zn) and to develop a production to merchandise for poultry litter that would result in reduction in pollutants from these materials. Furthermore, in order to improve environmental management in the poultry industry, the use of alum, liquid alum and high acid alum all should be provided a valid means of reducing negative environmental impact.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Effects of Levels of Feed Intake and Inclusion of Corn on Rumen Environment, Nutrient Digestibility, Methane Emission and Energy and Protein Utilization by Goats Fed Alfalfa Pellets

  • Islam, M.;Abe, H.;Terada, F.;Iwasaki, K.;Tano, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.948-956
    • /
    • 2000
  • The effect of high and low level of feed intakes on nutrient digestibility, nutrient losses through methane, energy and protein utilization by goats fed on alfalfa (Medicago sativa L.) pellets based diets was investigated in this study. Twelve castrated Japanese goats were employed in two subsequent digestion and metabolism trials. The goats were divided into three groups, offered three diets. Diet 1 consisted of 100% alfalfa pellet, Diet 2 was 70% alfalfa pellet and 30% corn, and Diet 3 was 40% alfalfa pellet and 60% corn. The two intake levels were high (1.6 times) and low (0.9 times) the maintenance requirement of total digestible nutrients (TON). Rumen ammonia nitrogen ($NH_3$-N) level of Diet 1 was lower (p<0.001) compared to Diets 2 and 3, but the values were always above the critical level (I50 mg/liter), The pH values of rumen liquor ranged from 6.02 to 7.30. Apparent digestibility of nutrient components did not show differences (p>0.05) between the two intake levels but inclusion of corn significantly altered the nutrient digestibility. Diet 3 had highest (p<0.001) dry matter (DM), organic matter (OM), ether extract (EE) and nitrogen fee extract (NFE) digestibility followed by the Diet 2 and Diet 1. The crude protein (CP) digestibility values among the three diets were in a narrow range (70.1 to 70.8%). Crude fiber (CF) digestibility for Diet 3 was slight higher (p>0.05) than that for other two diets. When alfalfa was replaced by corn, there were highly significant (p<0.001) increases in DM, OM, EE and NFE apparent digestibility and a slight increase in the CF digestibility (p>0.05). There were no differences (p>0.05) in energy losses as methane ($CH_4$) and heat production among the diets but energy loss through urine was higher for the Diet 1. The total energy loss as $CH_4$ and heat production were higher for the high intake level but the energy loss as $CH_4$ per gram DM intake were same (0.305 kcal/g) between the high and low intake level. Retained energy (RE) was higher for Diet 3 and Diet 2. Nitrogen (N) losses through feces and urine were higher (p<0.001) for Diet 1. Consequently, N retention was lower (p>0.05) for Diet 1 and higher in Diets 3 and 2. It is concluded that inclusion of corn with alfalfa increased the metabolizable energy (ME) and RE, and retained N through reducing the energy and N losses. The high level of intake reduced the rate of nutrient losses through feces and urine.

The Effects of Different Copper (Inorganic and Organic) and Energy (Tallow and Glycerol) Sources on Growth Performance, Nutrient Digestibility, and Fecal Excretion Profiles in Growing Pigs

  • Huang, Y.;Yoo, J.S.;Kim, H.J.;Wang, Y.;Chen, Y.J.;Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.573-579
    • /
    • 2010
  • This study was conducted to determine the effects of different copper (inorganic and organic) and energy (tallow and glycerol) sources on growth performance, nutrient digestibility, gas emission, diarrhea incidence, and fecal copper concentration in growing pigs by using a 2${\times}$2 factorial design. In this trial, 96 pigs (63 d of age) were employed, with an average initial weight of 28.36${\pm}$1.14 kg. The dietary treatments were i) basal diet with 134 ppm copper (Korea recommendation) as $CuSO_4$+tallow; ii) basal diet with 134 ppm Cu as $CuSO_4$+glycerol; iii) basal diet with 134 ppm copper as CuMet+tallow; and iv) basal diet with 134 ppm copper as CuMet+ glycerol. Throughout the entire experimental period, no differences were noted among treatment groups with regard to the magnitude of improvement in ADG (average daily gain), ADFI (average daily feed intake) and G/F (gain:feed) ratios. The nitrogen (N) digestibility of pigs fed on diets containing organic copper was improved as compared with that observed in pigs fed on diets containing inorganic copper (p<0.05). An interaction of copper${\times}$energy was observed in the context of both nitrogen (p<0.05) and energy (p<0.01) digestibility. Ammonia emissions were significantly lower in the organic copper-added treatment groups than in the inorganic copperadded treatment groups (p<0.05). Mercaptan and hydrogen sulfide emissions were reduced via the addition of glycerol (p<0.05). No significant effects of copper or energy source, or their interaction, were observed in reference to diarrhea appearance and incidence throughout the entirety of the experimental period. The copper concentration in the feces was significantly lower in the organic copper source treatment group than was observed in the inorganic copper source treatment group (p<0.05). The results of this experiment show that organic copper substituted for inorganic copper in the diet results in a decreased fecal copper excretion, but exerts no effect on performance. The different energy (tallow and glycerol) sources interact with different copper sources and thus influence nutrient digestibility. Glycerol supplementation may reduce the concentrations of odorous sulfuric compounds with different Cu sources.

Effects of Dietary Glycine Betaine on the Growth Performance in Pigs (Glycine betaine 첨가가 돼지의 생산성에 미치는 영향)

  • Kwak, S.C.;Kim, J.H.;Ha, Y.J.;Lee, J.I.;Lee, J.R.;Jung, J.D.;Lee, J.D.;Park, G.B.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.205-220
    • /
    • 2005
  • This study was conducted to investigate the effect of the addition of glycine betaine to the diet on growth performance in pigs. A total of 400 pigs were divided into 4 feeding stages(Growing I: 23.10 $\pm$ 1.43, Growing II: 37.69$\pm$ 1.62, Finishing I: 66.51 $\pm$3.44 and Finishing II: 90.42$\pm$ 2.17 kg of initial body weight) then each feeding stage was divided into 4 treatment groups(Control: 0 0/0, Tl : 0.2 0/0, T2: 0.4% and T3 : 0.6 % of glycine betaine, respectively). The average daily gain and feed efficiency of T2 and T3 were significantly increased(p< 0.05) by dietary glycine betaine in stage I, 2 and 3. This result indicates that dietary glycine betaine could influence the pig growth performance. In feeding stage 4, the average daily gain and feed efficiency were significantly increased in 0.4% glycine betaine feeding group compared with other dietary groups(p < 0.05). Results suggest that feeding the pigs 0.4 % glycine betaine could be the most efficient dietary level. Crude protein, ether extract and crude ash digestibilities of 0.4% glycine betaine fed group were significantly increased compared with those of control group(p < 0.05). However, no significant difference was found in nutrient digestibilities among glycine betaine fed groups. Apparent faecal amino acid digestibilities of 0.4% glycine betaine fed group were more significantly higher than that of control group. The 0.4% glycine betaine fed group was significantly increased in apparent faecal amino acid digestibility compared with those of other glycine betaine fed group. No significant difference was shown in amount of microflora population between control and glycine betaine fed groups. Ammonia and hydrogen sulfide gas emission were significantly decreased in 0.4% glycine betaine feeding group compared with other dietary groups(p < 0.05).

Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites (제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환)

  • You, Su Jin;Baek, In Gu;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.435-441
    • /
    • 2012
  • The direct conversion of cellulose into polyols in $H_2$ was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and ${\beta}$. For comparison, Pt catalysts supported on ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, and $SiO_2$ were also tested. The physical properties of the catalysts were probed with $N_2$ physisorption. The surface acidity was measured with temperature programmed desorption of ammonia ($NH_3$-TPD). The Pt content was quantified with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of $H^+$ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.

Effect of organic medicinal charcoal supplementation in finishing pig diets

  • Kim, Kwang Sik;Kim, Yeung-Hwa;Park, Jun-Ceol;Yun, Won;Jang, Keum-Il;Yoo, Do-Il;Lee, Dong-Hoon;Kim, Beom-Gyu;Cho, Jin-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.50-59
    • /
    • 2017
  • This study was performed to evaluate the effect of organic medicinal charcoal as a feed additive on aflatoxin absorption, odor emission, fecal microflora and in vitro digestibility in pig diet. A 10-day trial was conducted with 20 [(Yorkshire ${\times}$ Landrace) ${\times}$ Duroc] finishing pigs ($BW=81{\pm}3.3kg$) to investigate the population of Lactobacillus and E. coli in feces and fecal odor ($NH_3$, $H_2S$, total mercaptans, and Acetic acid) in vivo. The in vitro and in vivo treatments included: control (basal diet; CON); (basal diet + 0.25% Organic Medicinal Charcoal; OMC); (basal diet + 0.50% Pyroligneous Charcoal; PC); and (basal diet + 0.50% Coconut tree Charcoal; CC). The aflatoxin absorption capacity was 100, 10, and 20% in OMC, PC, and CC, respectively. The digestibility of dry matter in OMC was significantly higher than that of CON, PC, or CC in vitro (p < 0.05). The digestibility of organic matter in OMC was found to be significantly different from that of CON (p < 0.05). Fecal ammonia and $H_2S$ emissions of OMC were observed to be significantly lower than those of CON, PC, and CC (p < 0.05). Lactobacillus counts in feces of OMC and CC were significantly higher than those of CON and PC (p < 0.05). Fecal E. coli counts of OMC and CC were lower than those of CON and PC (p < 0.05). It was concluded that organic medicinal charcoal can be used as a feed additive in pig diets because it improves the digestibility of feed and fecal odor, and has positive effects on the population of microorganism in feces.