• 제목/요약/키워드: Amino acid sequence

검색결과 1,692건 처리시간 0.034초

효모 기능 선발을 이용한 벼의 세포사유발을 억제하는 유전자 선발 (Putative Bax inhibitor from rice a conserved cell death suppressor, is isolated by yeast functional screening)

  • 이규호;손예진;위디;손재근;김경민
    • Current Research on Agriculture and Life Sciences
    • /
    • 제29권
    • /
    • pp.37-42
    • /
    • 2011
  • 본 연구에서는 효모에서 과 발현하는 Bax inhibior와 관련된 유전자를 동정하여 특성화 하였다. Yeast functional screening이라는 방법을 이용하여, 일반적은 환경에서 재배된 벼의 cDNA를 QX95001에 형질전 환하여 SD-galactose-Leu--Ura-배지에서 생성된 8개의 클론을 선발하였다. 그 중 AtBI-1과 같은 domain이 있는 D2-234를 포함하여 5개의 클론을 선발하였다. D2-243는 741bp의 염기서열과 247개의 아미노산으로 구성되었고 5 membrane-spanning 단편으로 되어 있음을 확인하였다. D2-234는 SD-galactose-$Leu^-$-$Ura^-$배지에서 세포성장이 왕성하였다. 본 실험에서 얻어진 결과는 벼 식물에서 나타나는 세포예정사와 관련된 단백질을 선발하는데 유용하게 이용될 것으로 생각된다.

  • PDF

Characterization of the Gene for the Light-Harvesting Peridinin-Chlorophyll-Protein of Alexandrium tamarense

  • LEE SOON-YOUL;KANG SUNG-HO;JIN EONSEON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1094-1099
    • /
    • 2005
  • Photosynthetic dinoflagellates contain a water-soluble, light-harvesting antenna called the peridinin-chlorophyll-protein (PCP) complex, which has an apoprotein with no sequence similarity to other known proteins. There are two forms of PCP apoproteins; the 15-kDa short form and the 32- to 35­kDa long form. The present study describes the PCP protein and its cDNA from Alexandrium tamarense. A cDNA library was constructed from mRNA isolated from A. tamarense. The complete PCP cDNA was generated by reverse-transcription coupled to polymerase chain reaction (RT-PCR), together with rapid-amplification of cDNA ends (RACE). The A. tamarense PCP cDNA encoded a 55-amino acid signal peptide and a 313-amino acid mature protein with a calculated mass of 32 kDa, which corresponded to that of the long form of PCP. Phylogenetic analysis indicated that the sequence of A. tamarense PCP did not cluster with the short-form PCPs, to which it was only about $55\%$ identical, but which were $79-83\%$ identical to other long-form PCPs. The deduced amino acid sequence of A. tamarense PCP contains an internal duplication, which suggests the possibility that long-form PCPs arose by gene duplication or by the fusion of genes encoding the short form. The abundance of PCP mRNA changed substantially in response to different light conditions, indicating the possible existence of a photo-acclimation response in A. tamarense.

고려인삼의 Ribulose-1,5-Bisphosphate Carboxylase Small Subunit(rbcS) 유전자의 분리 및 특성분석 (Molecular Cloning of a cDNA Encoding Ribulose-1,5-bisphosphate Carboxylase Small Subunit (rbcS) from Panax ginseng C. A. Meyer)

  • 인준교;이범수;윤재호;손화;이태후;양덕춘
    • 한국자원식물학회지
    • /
    • 제18권3호
    • /
    • pp.374-381
    • /
    • 2005
  • 고려 인삼(Panax ginseng)의 뿌리로부터 ribulose-1,5-bisphosphate carboxylase small subunit(rbcS) 유전자를 선발하여 sequence 분석을 실시하였다. 고려 인삼 rbcS cDNA는 790 bp 염기로 구성되어 있으며, 183개의 아미노산(pI 8.37)을 코드하는 549 bp의 ORF를 가지고 있고 단백질의 분자량은 20.5 kDa으로 추정되었다. 인삼 rbcS는 기존에 보고된 것과 유사성을 나타내었으며, Helianthus annuus(CAA68490)에서 분리된 것과 $78\%$의 높은 상동성을 보였다. 기존에 데이터베이스에 축적되어 있는 다른 식물체로부터 분리된 rbcS와 아미노산 서열을 비교한 결과 인삼의 ybcS는 H. annuus (CAA68490), C. morifolium (AAO25119), L. sativa (Q40250)와 밀접한 유연관계에 있는 것으로 조사되었다.

ermK Leader Peptide : Amino Acid Sequence Critical for Induction by Erythromycin

  • Kwon, Ae-Ran;Min, Yu-Hong;Yoon, Eun-Jeong;Kim, Jung-A;Shim, Mi-Ja;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1154-1157
    • /
    • 2006
  • The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E. coli ${\beta}-galactosidase$ reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not. The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.

Sequence Analysis of E2 Glycoprotein from Indian Isolate of Classical Swine Fever Virus (CSFV)

  • Bajwa, Mehak;Verma, Ramneek;Deka, Dipak;Dhol, Gagandeep Singh;Barman, Nagendra Nath
    • 한국미생물·생명공학회지
    • /
    • 제43권1호
    • /
    • pp.22-30
    • /
    • 2015
  • CSF is a major concern for the swine industry, representing currently the most epizootically dangerous disease to the species. Numerous CSFV isolates with various degrees of virulence have already been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe per acute hemorrhagic fever with very high mortality. The molecular epidemiology of CSFVs has proven to be an essential tool for effective disease control and the development of safe and effective vaccines. Therefore, this study cloned and sequenced local CSFV isolates, and conducted a phylogenetic analysis based on the E2 glycoprotein encoding sequences.The RNA was extracted from PK15 cell culture passaged CSFV isolates, the cDNA prepared, and the complete E2 gene amplified with a product size of 1186 bp. The gelpurified PCR product was cloned into a pGEMT easy vector and the positive clone commercially sequenced. Aligning the nucleotide (1119 bp) and amino acid (373) sequences with 29 reference strains revealed nucleotide and amino acid sequence identities of 82.60-97.80% and 88.70-98.70%, respectively, indicating a higher mutation rate of the field CSFV strains. The phylogenetic analysis based on the complete E2 amino acid sequences also revealed a reliable differentiation of all the analyzed strains into specific genetic groups and subgroups, plus the local isolate (CSFV-E2) was found to cluster with the CSFV subgroup 2.2. Thus, the full-length E2 cds proved to be most suitable for a reliable and statistically significant phylogenetic analysis of CSFV isolates.

Identification of Grapevine leafroll-associated virus 3 Ampelovirus from Grapevines in Korea

  • Kim, Hyun-Ran;Lee, Sin-Ho;Lee, Bong-Choon;Kim, Yeong-Tae;Park, Jin-Woo
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.127-130
    • /
    • 2004
  • Grapevine leaf roll-associated virus 3 (GLRaV-3) is one of the most important viral diseases of grapevine in the world. In this study, GLRaV-3 Ampelovirus was identi-fied from grapevines in Korea by analyzing viral coat protein size, nucleotide, and amino acid sequences. The molecular weight of viral coat protein from virus-infected in vitro plantlets was determined by western blot using a commercial GLRaV-3 polyclonal antibody. Western blot analysis showed a coat protein of about 43 kDa. RT-PCR product of about 942 bp which encoded the coat protein (CP) gene was amplified with specific primers. When the viruses existed at low titers in the host plant, the dsRNA had very specific template in RT- PCR amplification of fruit tree viruses. Especially, small-scale dsRNA extraction method was very reliable and rapid. Sequence analysis revealed that the CP of the GLRaV-3 Ko consisted of 942 bp nucleotide, which encoded 314 amino acid residues. The CP gene of GLRaV-3 Ko had 98.9% nucleotide sequence and 98.7% amino acid sequence identities with earlier reported GLRaV-3. This is the first report on molecular assay of GLRaV-3 Ampelovirus identified from Korea. The GLRaV-3 Ko CP clone would be very useful for breeding of virus resistant grapevines.

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Cloning and mRNA Expression of an Actin cDNA from the Mulberry Longicorn Beetle, Apriona germari

  • Gui, Zhongzheng;Lee, Kwang Sik;Wei, Yadong;Yoon, Hyung Joo;Kim, Iksoo;Guo, Xijie;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.187-191
    • /
    • 2004
  • Actin is a ubiquitous and highly conserved protein found in eukaryotic organisms. In this study, we describe the cDNA cloning and mRNA expression of an actin gene from the mulberry longicorn beetle, Apriona germari. The A. germari actin cDNA is 1524 bp containing a complete 1128 bp open reading frame that encodes a polypeptide of 376 amino acid residues with a predicted molecular weight of about 41.5 kDa. The deduced amino acid sequence of the A.germari actin cDNA showed 99% protein sequence identity to Homalodisca coagulata actin, differing at only two amino acid positions, and 92-98% protein sequence identity to known insect species actins. The predicted three-dimensional structure of A. germari actin revealed the four residue hydrophobic pulg loop characteristic of the actin family. Northern blot analysis showed that A. germari actin is highly expressed in epidermis and muscle, and less strongly in midgut, but not in the fat body of A. germari larva.

Antiangiogenic and Antitumor Activities of the Cryptic Fragments with Kringle Architecture

  • Joe, Young-Ae;Kim, Myung-Rae;Shim, Byoung-Shik;Oh, Dae-Shik;Hong, Sung-Hee;Hong, Yong-Kil
    • Biomolecules & Therapeutics
    • /
    • 제11권4호
    • /
    • pp.205-213
    • /
    • 2003
  • Various angiogenesis inhibitors target vascular endothelial cells and block tumor angiogenesis. Angiostatin is a specific endogenous angiogenesis inhibitor in clinical trials, which contains only the first four triple loop structures, known as kringle domains. Its generated by proteolytic cleavage of its parent molecule plasminogen, which itself does not exhibit antiangiogenic activity. Kringle domains from prothrombin, apolipoprotein, hepatocyte growth factor, urokinase and tissue-type plasminogen activator also elicit anti-angiogenic or antitumor activities in several model systems, albeit low amino acid sequence identity between angiostatin and each individual kringle. However, the differential effects of each kringle domain on endothelial cell proliferation, and migration observed in these kringle domains, suggest that the amino acid sequence of the primary structure is still important although kringle architecture is essential for anti-mlgiogenic activity. If it is further studied as to how amino acid sequence and kringle architecture contributes in anti-angiogenic activity, with studies on underlying mechanisms of anti-angiogenesis by kringle-based angiogenesis inhibitors, it will provide basis for the development of new potent anti-angiogenesis inhibitors and improvement of the efficacy of angiogenesis inhibitors.

Molecular Cloning, Segmental Distribution and Ontogenetic Regulation of Cationic Amino Acid Transporter 2 in Pigs

  • Zou, Shi-geng;Zhi, Ai-min;Zhou, Xiang-yan;Zuo, Jian-jun;Zhang, Yan;Huang, Zhi-yi;Xu, Ping-Wen;Feng, Ding-yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.712-720
    • /
    • 2009
  • The goal of this study was to elucidate the expression and segmental distribution of the glomerular cationic amino acid metabolism transporter-2 (CAT-2) and thus to improve our understanding of porcine cationic amino acid transporters and amino acid absorption. Porcine CAT-2 was cloned, sequenced and characterized. The predicted amino acid sequence of porcine CAT-2 shared 86.1% and 92.1% identity with human and mouse CAT-2A, respectively. The tissue distribution patterns and ontogenic changes of CAT-2 mRNAs were determined by real-time Q-PCR. The results showed that porcine CAT-2 was highly expressed in the heart and intestinal tract (duodenum, ileum and jejunum). In addition, the mRNA of CAT-2 was found in liver, lung, kidney, brain and muscle. Within the intestinal tract, CAT-2 mRNA was most abundant in the ileum and rarely expressed in the duodenum. In the duodenum, the levels of CAT-2 mRNA reached their peak on day 7 (p<0.05) while in the jejunum, levels were low on day 1 and 7 and increased rapidly after day 26 before peaking on days 30 and 60 (p<0.05). The levels then dramatically decreased by day 90 (p<0.05). In the ileum, levels achieved their maximum on day 30 and then decreased significantly on day 60 (p<0.05).