Browse > Article

Antiangiogenic and Antitumor Activities of the Cryptic Fragments with Kringle Architecture  

Joe, Young-Ae (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea)
Kim, Myung-Rae (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea)
Shim, Byoung-Shik (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea)
Oh, Dae-Shik (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea)
Hong, Sung-Hee (Laboratory of Experimental Therapeutics, Korea Institute of Radiological and Medical Sciences)
Hong, Yong-Kil (Cancer Research Institute, Catholic Research Institutes of Medical Sciences, The Catholic University of Korea)
Publication Information
Biomolecules & Therapeutics / v.11, no.4, 2003 , pp. 205-213 More about this Journal
Abstract
Various angiogenesis inhibitors target vascular endothelial cells and block tumor angiogenesis. Angiostatin is a specific endogenous angiogenesis inhibitor in clinical trials, which contains only the first four triple loop structures, known as kringle domains. Its generated by proteolytic cleavage of its parent molecule plasminogen, which itself does not exhibit antiangiogenic activity. Kringle domains from prothrombin, apolipoprotein, hepatocyte growth factor, urokinase and tissue-type plasminogen activator also elicit anti-angiogenic or antitumor activities in several model systems, albeit low amino acid sequence identity between angiostatin and each individual kringle. However, the differential effects of each kringle domain on endothelial cell proliferation, and migration observed in these kringle domains, suggest that the amino acid sequence of the primary structure is still important although kringle architecture is essential for anti-mlgiogenic activity. If it is further studied as to how amino acid sequence and kringle architecture contributes in anti-angiogenic activity, with studies on underlying mechanisms of anti-angiogenesis by kringle-based angiogenesis inhibitors, it will provide basis for the development of new potent anti-angiogenesis inhibitors and improvement of the efficacy of angiogenesis inhibitors.
Keywords
angiogenesis; angiostatin; kringle; inhibitor; antitumor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carmeliet, R, Dor, Y., Herbert, J. M., Fukumura, D., Brussel-mans, K., Dewerchin, M., Neeman, M., Bono, R, Abramov-itch, R., Maxwell, R, Koch, C. J., Ratcliffe, R, Moons, L., Jain, R. K., Collen, D., Keshert, E., and Keshet, E. (1998). Role of HIF-lalpha in hypoxia-mediated apoplosis. ce11 proliferation and tumour angiogenesis. Nature 394, 485-490   DOI   ScienceOn
2 Castellino, F. J., and Beals, J. M. (1987). The genetic relationships between the kringle domains of human plasmmogen, prothrombin, lissue plasminogen activator, urokinase, and coagulation factor XII. J. Mol. Evol. 26, 358-369   DOI
3 Asahai-a, T., Masuda, H., Takahshi, T., Kalka, C., Paslore, C., Silver, M., Kearne, M., Magner, M., and Isner, J. M. (1999). Bone marrow origin of endothelial progenitor cells responsi-ble for postnatal vasculogenesis in physiological and Path0109-ical neovasculahzation. Circ. Res. 6; 85, 221-228
4 Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., and Hana-han, D. (1999). Effects of angiogenesis inhibilors on multi-slage carcmogenesis in mice. Science 284, 808-812   DOI   ScienceOn
5 Cao, R., Wu, H. L., Veitonmaki, N., Linden, R, Famebo, J., Shi, G. Y, and Cao, Y. (1999). Suppression of angiogenesis and tumor growth by the inhibilor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. U.S.A. 96, 5728-5733   DOI   ScienceOn
6 Cao, Y. (2001). Endogenous angiogenesis inhibitors and their thera-peutic implicadons. Int. J. Biochem. Cell Biol. 33, 357-369   DOI   ScienceOn
7 Cao, Y., Chen, A., An, S. S., Ji, R. W., Davidson, D., and Llinas,M. (1997). Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272, 22924-22928   DOI   ScienceOn
8 Cao, Y, Cao, R., and Veitonmaki, N. (2002). Kringle stmctnres and andangiogenesis. Curr. Med. Chem. Anti-Canc Agents 2, 667-681   DOI   ScienceOn
9 Cao, Y, Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., O'Reilly, M. S., Llinas, M., and Folkman, J. (1996). Kringle domains of human angiostatin. Characteriza-tion of Ihe anti-proliferative activity on endothelial cells. J. Biot. Chem. 271, 29461-29467   DOI
10 Folkman, J. (1995b). Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N. Engl J. Med. 333, 1757-1763   DOI   ScienceOn
11 Fukumura, D., Xavier, R., Sugiura, T., Chen, Y, Park. E. C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K., and Seed, B. (1998). Tumor induction of VEGF promoter activity in stro-mal cells. Cell 94, 715-725   DOI   ScienceOn
12 Joe, Y. A., Hong, Y. K., Chung, D. S., Yang, Y. J., Kang, J. K., Lee, Y. S., Chang, S. I., You, W. K., Lee, H., and Chung, S. I. (1999). Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int. J. Can-cer 82, 694-699   DOI   ScienceOn
13 Kerbel, R., and Folkman, J. (2002). Clinical transladon of angio-genesis inhibitors. Nat. Rev. Cancer 2, 727-739   DOI   ScienceOn
14 Castellino, F. J., Ploplis, V. A., Powell, J. R., and Sthckland, D. K. (1981). The existencc of independent domain structures inhuman Lys77-p1asminogen. J. Biol. Chem. 256, 4778-4782
15 Claesson-Welsh, L., Welsh, M., Ito, N., Anand-Apte, B., Soker, S., Zetter, B., O'Reilly, M., and Folkman, J. (1998). Angiostatin induces endothelial cell apoptosis and activation of focal adhe-sion kinase independently of the integrin-binding motif RGD. Proc. Nall. Acd. Sci. U.S.A. 95, 5579-5583   DOI   ScienceOn
16 Dameron, K. M., Volpert, 0. V., Tainsky, M. A., and Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regula-tion of thrombospondin-l. Science 265, 1582-1584   DOI
17 Daie, K., Matsumnoto, K., Shimmra, H., Tanaka, M., and Nakainum, T. (1997). HGF/NK4 is a speciRc antagonist for pleioti-optnc actions ofhepatocyte growth factor. FEBS Lett. 420, 1-6   DOI   ScienceOn
18 Folkman, J. (1995a). Angiugenesis in cancer, vascular, rheuma-toid and other disease. Nat. Med. 1, 27-31   DOI   ScienceOn
19 Davies, G., Mason, M. D., Martin, T. A., Parr, C., Watkms, G., Lane, J., Matsumoto, K., Nakamura, T., and Jiang, W. G. (2003). TheHGF/SF antagonist NK4 reverses fibroblast- and HGF-induced prostate tumor growth and anUiogenesis m vivo. Int. J. Cancer 106, 348-354   DOI   ScienceOn
20 Dong, Z., Kumar, R., Yang, X., and Fidler, I. J. (1997). Macroph-age-derived metalloelastase is responsible for the generation ofangiostatin in Lewis lung carcinoma. CeII 88, 801-810
21 Lee, H., Kim, H. K., Lee, J. H., You, W. K., Chung, S. I., Chang, S. I., Park, M. H., Hong, Y. K., and Joe, Y. A. (2000). Dismp tion of interkringle disulfide bond of plasrmnogen kringle 1 -3 changcs the lysinc binding capability of kringle 2. but not its antiangiogenic activity. Arch. Biochem. Biophys. 375, 359-363   DOI   ScienceOn
22 Lee, T. H., Rhim, T., and Kim, S. S. (1998). Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibro-blast growth factor-stimulated capillary endothelial cells. J. Biot. Chem. 273, 28805-28812   DOI
23 Gately, S., Twardowski, p., Stack M. S., Cundiff, D. L., GreUa, D., Cas-tellino, F. J., Enghild, J., Kwaan, H. C.. Lee, F, Kramer, R. A., Volp-ert, 0., Bouck, N., and Soff, G. A. (1997). The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. Nall. Acad. Sci. U.S.A. 94,10868-10872   DOI   ScienceOn
24 Griscelli, R, Li, H., Bennaceur-Gnscelli, A., Soria, J., Opolon, R,Soria, C, Perricaudet, M., Yeh, P,, and Lu, H, (1998). Angioslatm gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc. Natl. Acad. Sci. U.S.A. 95, 6367-6372   DOI   ScienceOn
25 O'Reilly, M. S., Holmgren, L., Chen, C., and Folkman, J. (1996.). Angiostatin induces aiid sustains dormancy of human primary tumors in mice. Nat. Med. 2, 689-692   DOI   ScienceOn
26 Holmgren, L,, O'Reilly, M. S., and Folkman, J. (1995). Dormancy of micrometastases: balanced proliferadon and apoptosis in the pres-ence of angiogenesis suppression. Nat. Med. 1, 149-153   DOI   ScienceOn
27 Ji, W. R., Bamentos, L. G., Llinas, M., Gray, H., Villarreal, X., DeFord, M. E., Castellino, F. J., Kramer, R. A., and Trail, P. A. (1998a). Selective inhibition by kiingle 5 of human plasmino-gen on endothelial cell migration, an important process mangiogenesis. Biochem. Biophys. Res. Commun 247, 414-419   DOI   ScienceOn
28 Ji, W. R., Castellino, F. J., Chang, Y., Deford, M. E., Gray, H., Villarreal, X., Kondri, M. E., Marti, D. N., Llinas, M., Schaller, J., Kramer, R. A., and Trail, P. A. (1998b). Characterization of kringle domains of angiostatin as antagonists of endoihelial cell migration, an important process in angiogenesis. FASEB J. 12 1731-1738
29 O'Reilly, M. S., Holmgren, L., Shing, Y, Chen, C., Rosenthal. R. A., Moses, M., Lane, W. S., Cao, Y, Sage, E. H., and FoLkman, J. (1994). Angiostatin: a novel angiogenesis inhibitor that medi-ates the suppression of metastases by a Lewis lung carcinorna Cell 79, 315-328   DOI   ScienceOn
30 Perez-Atayde, A. R., Sallan, S. E., Tedrow, U., Connors, S., AU-red, E., and Folkman, J. (1997). Spectrum of tumor angiogen-esis in the bone marrow of children with acute lymphoblasiic leukemia. Am. J. Pathol. 150, 815-821
31 Kim, H. K., Hong, Y. K., Park, H. E, Hong, S. E., and Joe, Y. A. (2003a). Secretory production of recombinant urokmase kringle domam in Pichia pastoiis. J. Microbiol. Bwtechmt. 13, 591-597
32 Kim, H. K., Lee, S. Y., Oh, H. K., Kang, B. H., Ku, H. J., Lee, Y, Shin, J. Y., Hong, Y. K., and Joe, Y. A. (2003b). Inhibition of endothelial cell proliferation by the recombinant kringle domain of tissue-type plasminogen activator. Biochem. Biophys. Res. Commun 304, 740-746   DOI   ScienceOn
33 Wajih, N., and Sane, D. C. (2002). Angiostatin selectivdy inhibits sig-naling by hepatocyte growth factor in endothelial and smooth musde cells. Blood, 2002-2002-0582
34 Kim, J. S., Chang, J. H., Yu, H. K., Ahn, J. H., Yum, J. S., Lee, S. K., Jung, K. H., Park, D. H., Yoon, Y, Byun, S. M., and Chung, S. I. (2003c). Inhibition of Angiogenesis and Angiogenesis-depen-dent Tumor Growth by the Cryptic Kringle Fragments of Human Apolipoprotein(a). J. Biol. Chem. 278, 29000-29008   DOI   ScienceOn
35 Kim, K. S., Hong, Y. K., Joe, Y. A., Lee, Y., Shin, J. Y., Park, H. E., Lee, I. H., Lee, S. Y., Kang, D. K., Chang, S. I., and Chung, S. I. (2003d). Anti-angiogemc acdvity of the recombinant krin-gle domain of urokmase and its specific entry into endothelial cells. J. BioI Chem., 278, 11449-11456   DOI   ScienceOn
36 Kuba, K., Matsumoto, K., Date, K., Shimnura, H., Tanaka, M., and Nakamura, T. (2000). HGF/NK4, a Four-Kringle Antagonist of Hepatocyte Growth Factor, Is an Angiogenesis Inhibitor that Suppresses Tumor Growth and Metastasis in Mice. Cancer Res. 60, 6737-6743
37 Xin, L., Xu, R., Zhang, Q., Li, T. P., and Gan, R. B. (2000). Ki-ingle 1 of human hepatocyte growth factor inhibits bovine aortic endolhelial cell proliferation stimulated by basic Fibroblast growlh factor and causes cell apoptosis. Biochem. Biophys. Res. Commun 277, 186-190   DOI   ScienceOn
38 Lu, H., Dhanabal, M., Volk, R., Waterman, M. J., Ramchandran, R., Knebelmann, B., Segal, M., and Sukhatme, V. P. (1999). Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells. Biochem. Biophys. Res. Commun 258, 668-673   DOI   ScienceOn
39 Lucas, R., Holmgren, L., Garcia, I., Jimenez, B., Mandhota, S. J., Bor-lat, F., Sim, B. K., Wu, Z., Gmu, G..E., Shing, Y, Soff. G. A., Bouck, N., and Pepper, M. S. (1998). Multiple forms of angiostatin induce apoptosis in endothelial cells. BIood 92, 4730-4741
40 MacDonald, N. J., Murad, A. C., Fogler, W. E., Lu, Y, and Sim, B. K. (1999). The turnor-suppressing activity of angiostatin protein resides within kringles 1 to 3. Biochem. Biophys. Res. Commun 264, 469-477   DOI   ScienceOn
41 Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman. M. D., Misra, U. K., Cheek, D. J. P., and Salvatore, V. (2001). Endothelial cell surface Fl-FO ATP synthase is active in ATP synthesis and is inhibited by angiostaLin. PNAS 98, 6656-6661   DOI   ScienceOn
42 Novokhatny, V. V, Kudinov, S. A., and Privalov, P. L. (1984). Domains in human plasminogen. J. Mol. Biol. 179, 215-232   DOI
43 O'Reilly, M. S., Boehm, T., Shing, Y, Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. CeIl 88, 277-285   DOI   ScienceOn
44 Relf, M., LeJeune, S,, Scott, P. A., Fox, S., Smith, K., Leek, R., Moghaddam, A., Whitehouse, R., Bicknell, R., and Hanis, A. L. (1997). Expression of the angiogenic factors vascular endot-helial cell growth factor, acidic and basic fibroblast growth fac-Lor, turnor growth faclor beta-l, Platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963-969
45 Rhim, T. Y, Park, C. S., Kim, E,, and Kim, S. S. (1998). Human prothrombin fragment 1 and 2 inhibit bFGF-induced BCE cell growth. Biochem. Biophys. Res. Commun 252, 513-516   DOI   ScienceOn
46 Troyanovsky, B., Levchenko, T., Mansson, G., Matvijenko, 0., and Holrngren, L. (2001). Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell Biol. 152, 1247-1254   DOI   ScienceOn
47 Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., Fujita, Y, Kothari, S., Mohle, R., Sauvage, L. R., Moore. M. A. Storb, R. E, and Hammond, W. P. (1998). Evidence for circulat-ing bone marrow-derived endothelial cells. Blood 92, 362-367
48 Tarui, T., Miles, L. A., and Takada, Y. (2001). Specific interaction of angiostatin with integrin a1pha(v)beta(3) in endolhelial cells. J. Biol Chem. 276, 39562-39568   DOI   ScienceOn
49 Trexler, M., and Patthy, L. (1983). Folding autonomy of the krin-gle 4 fragment of human plasminogen. Proc. Natl Acad. Sci. U.S.A. 80, 2457-2461   DOI   ScienceOn