• Title/Summary/Keyword: Ambient light

Search Result 362, Processing Time 0.035 seconds

The Influence of Water Temperature and Salinity on the Filtration Rates of the Short-necked clam, Ruditapes philippinarum (수온과 염분 변화에 따른 바지락의 여과율 변동)

  • Shin, Hyun-Chool;Lim, Kyeong-Hun
    • The Korean Journal of Malacology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The present study was performed to describe the influence of water temperature and salinity on the filtration rates of the short-necked clam, Ruditapes philippinarum. The clams were collected at tidal flat near Yeosu city, Cheollanamdo, Korea, from July 2001 to August 2001. Diatoms, Phaeodactylum tricornutum (KMCC B-128), were indoor-cultured by f/2 medium, and were used to measure the filtration rate of the clams. Filtration rates of the clams were measured by indirect method. Cell concentrations of food organisms were determined by direct counting cells using the hemacytometer under the light microscope. The filtration rate of the clams increased with temperatures up to the optimum temperature, circa 25$^{\circ}C$. Above this optimum temperature, the filtration rate decreased drastically. Also the filtration rate of the clams increased with salinity up to 35 psu. The maximal filtration rates of the clams were recorded at 20-25$^{\circ}C$, similar to be known as the optimal temperature for their growth, and 25-35 psu, respectively. The minimal filtration rates of the clams were recorded at 5$^{\circ}C$ and 15 psu. At the similar temperature and salinity, the filtration rate of the younger clams was higher than that of the older ones. Thermal coefficient, Q$_{10}$ values at low temperature range were much higher than those at high temperature range. These results indicate the short-necked clam is more sensitive in cold water. As they grow up, they become more stronger against their ambient environmental changes, such as thermal-shock, salinity changes.

  • PDF

Analysis of Environment Factors in Pleurotus eryngii Cultivation House (새송이버섯 재배사의 환경요인 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.200-206
    • /
    • 2003
  • Pleurotus eryngii(King oyster) is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the year round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation house(A,B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. this experiment was conducted for about two-month from Nov. 11, 2002 to Dec. 30, 2002 in Eryngii. cultivation house-A, B. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Maximum air temperature difference between the upper and lower growth stage during a heating time zone was about 2~3$^{\circ}C$. The max. and min. relative humidity were ranged approximately 60~100%, and average relative humidity was ranged approximately 80~100%. And $CO_2$concentration increased until maximum 1,600~1,800 ppm with the passing growing period. The illuminance in cultivation house was widely distributed from 20lx to 160 lx in accordance with position, and it was maintained lower than the recommended illuminance range 100~200 lx. The average yield per bottle was about 67~85g. But the optimal productivity will be evaluated by considering the quality and quantity of mushroom production, energy requirements, facility construction and management cost, etc.

Study on the Low-temperature process of zinc oxide thin-film transistors with $SiN_x$/Polymer bilayer gate dielectrics ($SiN_x$/고분자 이중층 게이트 유전체를 가진 Zinc 산화물 박막 트랜지스터의 저온 공정에 관한 연구)

  • Lee, Ho-Won;Yang, Jin-Woo;Hyung, Gun-Woo;Park, Jae-Hoon;Koo, Ja-Ryong;Cho, Eou-Sik;Kwon, Sang-Jik;Kim, Woo-Young;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • Oxide semiconductors Thin-film transistors are an exemplified one owing to its excellent ambient stability and optical transparency. In particular zinc oxide (ZnO) has been reported because It has stability in air, a high electron mobility, transparency and low light sensitivity, compared to any other materials. For this reasons, ZnO TFTs have been studied actively. Furthermore, we expected that would be satisfy the demands of flexible display in new generation. In order to do that, ZnO TFTs must be fabricated that flexible substrate can sustain operating temperature. So, In this paper we have studied low-temperature process of zinc oxide(ZnO) thin-film transistors (TFTs) based on silicon nitride ($SiN_x$)/cross-linked poly-vinylphenol (C-PVP) as gate dielectric. TFTs based on oxide fabricated by Low-temperature process were similar to electrical characteristics in comparison to conventional TFTs. These results were in comparison to device with $SiN_x$/low-temperature C-PVP or $SiN_x$/conventional C-PVP. The ZnO TFTs fabricated by low-temperature process exhibited a field-effect mobility of $0.205\;cm^2/Vs$, a thresholdvoltage of 13.56 V and an on/off ratio of $5.73{\times}10^6$. As a result, We applied experimental for flexible PET substrate and showed that can be used to ZnO TFTs for flexible application.

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Electrodeposition of Cu(InxGa(1-x))Se2 Thin Film (CIGS 박막의 전착에 관한 연구)

  • Lee, Sang-Min;Kim, Young-Ho;Oh, Mi-Kyung;Hong, Suk-In;Ko, Hang-Ju;Lee, Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • The chalcopyrite $Cu(In_xGa_{(1-x)})Se_2$ (CIGS) is considered to be one of the effective light-absorbing materials for thin film photovoltaic solar cells. We describe the electrodeposition of CIGS thin films in ambient laboratory conditions, and suggest the electrochemical conditions to prepare stoichiometric CIGS thin films of Ga/(In + Ga) = 0.3. In acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$ and $Se^{4+}$ ions, the CIGS films of different Cu/In/Ga/Se chemical compositions were electrodeposited onto Mo/Glass substrate. The structure, morphology and chemical composition of electrodeposited CIGS films were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDS), respectively.

Application of smartphone and wi-fi communication for remote monitoring and control of protected crop production environment (스마트폰과 Wi-Fi통신을 이용한 시설재배지 환경 원격 모니터링 및 제어)

  • Hur, Seung-Oh;Han, Kyeong-Hwa;Jeon, Sang-Ho;Jang, Yong-Sun;Kang, Sin-Woo;Chung, Sun-Ok;Kim, Hak-Jin;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.753-759
    • /
    • 2011
  • Protected crop production has been popular in Korea as well as in other countries. Intensive and continuous monitoring and control of the environment, which is labor- and time-consuming, is critical for stable crop productivity and profitability, otherwise damage could be happened due to unfavorable ambient and soil conditions. In the study, potential utilization of smartphone and remote access application in protected crop production environment was investigated. Tested available remote access applications provided functions of mouse click (left and right buttons), zooming in and out, and screen size and color resolution control. Wi-Fi data communication speeds were affected by signal intensity and user place. Data speeds at high (> -55 dBm), medium (-70~-56 dBm), and low (< -71 dBm) signal intensity levels were statistically different (${\alpha}=0.05$). Means of data communication speed were 6.642, 4.923, and 2.906 Mbps at hot spot, home, and office, respectively, and the differences were significant at a 0.05 level. Smart phone and remote access application were applied successfully to remote monitoring (inside temperature and humidity, and outside precipitation, temperature, and humidity) and control (window and light on/off) of green house environment. Response times for monitoring and control were less than 1 s at all places for high signal intensity (> -55 dBm), but they were increased to 1 ~ 10 s at home and office and to 10 ~ 30 s at hot spot for low signal intensity (< -71 dBm) for Wi-Fi. Results of the study would provide useful information for farmers to apply these techniques for their crop production.

Effects of Temperature and Photoperiod on Male Activity in Laspeyresia pomonella (L.) in New York (온도와 광주기 조건이 코드링나방 수컷의 활동력에 마치는 영향)

  • SONG, YOO HAN;Ridel, Helmut
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.71-77
    • /
    • 1985
  • The male activity in Laspeyresia pomonella (L.) measured by an activity recording device in New York had two distinct peaks, the first peak at lights-off and the second one at ligts-on signal, under the defined conditions of temperature above $23^{\circ}C$ and light:dark (LD) 16:8 regime. The activity initiation of the first activity was observed four to six hours prior to the onset of scotophase and seened to be entraind by lights-off cue. Under the continuous photophase (LL) the activity period freeran with a period slightly greater than 24 hours, indicating that the rhythmicity is circadian The activity pattern was measured in eight different temperature conditions ranging from $11.3^{\circ}\;to\;30^{\circ}C$ under LD 16:8 regime. No activity was observed at $11.3^{\circ}C$ which seems to be temperature threshold for activity. The second peak of activity at lights-on signal disappeared at the temperature below $20^{\circ}C$ and the activity in scotophase was also suppressed at the temperature lower than $18^{\circ}C$. At the temperature range from $20^{\circ}\;to\;30^{\circ}C$, as temperature increased the second peak in the morning became larger and the activty in the scotophase was also increased. Because of the activity increase in the scotophase with rising temperature, the mean time of activity shifted towards the scotophase. The shift of the moth male activity period with the change of ambient temperature appears to be due to the suppression of activity under cool temperature (below $20^{\circ}C$) in scotophase.

  • PDF

Estimation of Benzene Emissions from Mobile Sources in Korea (국내 이동오염원에서 발생되는 벤젠 배출량 산정)

  • Lee, Ju-Hyoung;Cha, Jun-Seok;Hong, Ji-Hyung;Jung, Dong-Il;Kim, Ji-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.72-82
    • /
    • 2008
  • Benzene is a very harmful and toxic compound known as human carcinogen by all routes of exposure. Owing to the risky feature of benzene, several countries such as Japan, UK and EU have established the ambient air quality standard and protect from that risk of it. Korea also has designated it as one of the criteria air pollutants and established the concentration limit ($5\;{\mu}g/m^3$) in the air and is going to apply the standard from 2010. Benzene is emitted from various sources such as combustion plants, production processes, waste treatment facilities and also automobiles. Mobile source is known as one of the major emission sources of benzene. In this study, we estimated the domestic emissions of benzene from mobile source and compared the results with those of advanced countries. Mobile source was divided into 2 categories, Le., on-road source and non-road source. The total emissions of benzene from mobile source were estimated as 3,106 tons/yr and 1,612 tons/yr was emitted from on-road source and 1,494 tons/yr was from non-road source. Emission ratio of benzene from on-road source showed that 80.0% was from passenger cars, 10.1% was from taxis, 7.2% was from light-duty vehicles, 2.5% was from heavy-duty vehicles and 0.2% was from buses. In the case of non-road source, the distribution showed that 66.3% was from construction machineries, 14.5% was from locomotives, 11.7% was from ships, 7.1% was from agriculture equipments and 0.5% was from aircrafts. The cold-start emissions were estimated as 942 tons/yr and this value was almost 1.5 times greater than that for hot engine emissions (608 tons/yr). In addition, the fuel-based distribution was 65.9%, 31.1% and 2.8% from gasoline, LPG and diesel vehicles, respectively. The emission ratio from mobile source occupied 65% and 30% of total benzene emissions in USA and UK, respectively. In case of Korea, the emission ratio of benzene from mobile source occupied 29% (15% from on-road source, 14% from non-road source) which showed similar value with UK.

Physiological and Ecological Characteristics of Lipid-Producing Botryococcus Isolated from the Korean Freshwaters (한국산 고지질 미세조류 Botryococcus의 분포 및 생장 특성)

  • Shin, Sang-Yoon;Jo, Beom-Ho;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.288-294
    • /
    • 2013
  • Recently, sustainable production of biofuel using algal biomass is being pursued because of its enormous potential. First and foremost, securing superior strains to develop an efficient production system for algal biodiesel through screening or genetic improvement of microalgae is necessary. The genus of Botryococcus is regarded as one of the superior microalgae for biodiesel production due to its ability to accumulate high amounts of lipids and hydrocarbons. However, its low growth rate is a bottleneck for large-scale production and commercialization. The purpose of this study is to obtain indigenous Botryococcus strains which possess high lipid content and biomass productivity. The Botryococcus sp. was isolated from the Seobu Reservoir in Jeju Island and identified as Botryococcus sudeticus J2 by comparative analysis of 18s rRNA gene and ITS regions. The biomass productivity and lipid content of B. sudeticus J2 were 0.116 g $L^{-1}day^{-1}$ and 40.1% of dry wt., respectively. This was higher than the value of B. braunii UTEX 572, which is widely regarded as a superior strain among Botryococcus species. The relatively high growth rate of B. sudeticus J2 was achieved under a light intensity of 240 ${\mu}mol$ photons $m^{-2}s^{-1}$ with ambient air spargingwhen compared to 120 ${\mu}mol$ photons $m^{-2}s^{-1}$ with 2% $CO_2$ supply. In summary, it is likely that the isolated B. sudeticus J2 can be used for the mass cultivation and biodiesel production.

Effect of different short-term high ambient temperature on chicken meat quality and ultra-structure

  • Zhang, Minghao;Zhu, Lixian;Zhang, Yimin;Mao, Yanwei;Zhang, Mingyue;Dong, Pengcheng;Niu, Lebao;Luo, Xin;Liang, Rongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.5
    • /
    • pp.701-710
    • /
    • 2019
  • Objective: This study investigated the effect of different acute heat stress (HS) levels on chicken meat quality and ultra-structure. Methods: Chickens were randomly divided into 7 groups to receive different HS treatments: i) $36^{\circ}C$ for 1 h, ii) $36^{\circ}C$ for 2 h, iii) $38^{\circ}C$ for 1 h, iv) $38^{\circ}C$ for 2 h, v) $40^{\circ}C$ for 1 h, vi) $40^{\circ}C$ for 2 h, and vii) un-stressed control group ($25^{\circ}C$). Blood cortisol level, breasts initial temperature, color, pH, water holding capacity (WHC), protein solubility and ultra-structure were analyzed. Results: HS temperatures had significant effects on breast meat temperature, lightness ($L^*$), redness ($a^*$), cooking loss and protein solubility (p<0.05). The HS at $36^{\circ}C$ increased $L^*{_{24h}}$ value (p<0.01) and increased the cooking loss (p<0.05), but decreased $a^*{_{24h}}$ value (p<0.05). However, as the temperature increased to $38^{\circ}C$ and $40^{\circ}C$, all the values of $L^*{_{24h}}$, cooking loss and protein denaturation level decreased, and the differences disappeared compared to control group (p>0.05). Only the ultimate $pH_{24h}$ at $40^{\circ}C$ decreased compared to the control group (p<0.01). The pH in $36^{\circ}C$ group declined greater than other heat-stressed group in the first hour postmortem, which contributed breast muscle protein degeneration combining with high body temperature, and these variations reflected on poor meat quality parameters. The muscle fiber integrity level in group $40^{\circ}C$ was much better than those in $36^{\circ}C$ with the denatured position mainly focused on the interval of muscle fibers which probably contributes WHC and light reflection. Conclusion: HS at higher temperature (above $38^{\circ}C$) before slaughter did not always lead to more pale and lower WHC breast meat. Breast meat quality parameters had a regression trend as HS temperature raised from $36^{\circ}C$. The interval of muscle fibers at 24 h postmortem and greater pH decline rate with high body temperature in early postmortem period could be a reasonable explanation for the variation of meat quality parameters.