• Title/Summary/Keyword: Alzheimer′s disease (AD)

Search Result 458, Processing Time 0.028 seconds

Effects of 3-Phenyl-1-isoquinolinamine on the Metabolism of ${\beta}$-Amyloid Precursor Protein in Neuroblastoma Cells (3-페닐-1-이소퀴놀린아민이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Leem, Jae-Yoon;Cho, Won-Jea
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.529-534
    • /
    • 2010
  • Alzheimer's disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. $A{\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. Recently, we investigated that a quinoline compound from natural product reduced the secretion of $A{\beta}$ from the neuroblastoma N2a cells (NL/N cell line) overexpressing APPswe. In this study, 3-phenyl-1-isoquinolinamine, a synthetic isoquinoline compound was analyzed to determine its effects on the metabolism of APP. It inhibited the secretion of $A{\beta}$ peptides from the N2a NL/N cell line. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependent manner. Immunoblotting study showed that it inhibited APP stabilization and expression and it slightly increased the stablization and the expression of ${\gamma}$-secreatase component from the N2a NL/N cell line. We suggest that 3-phenyl-1-isoquinolinamine inhibits APP metabolism and $A{\beta}$ generation by the means of BACE inhibitory mechanism. This is the first report that 3-phenyl-1-isoquinolinamine inhibits the secretion of $A{\beta}$ peptides from neuroblastoma cells.

Effects of home-based cognitive and physico - occupational therapy program on cognitive function, depression and quality of life in dementia patients of a community (가정방문 인지 및 신체활동 작업치료 프로그램이 재가 치매환자의 인지, 우울 및 삶의 질에 미치는 효과)

  • Yoon, Hyun-Sung;Lee, Kang-Sook;Jeong, Won-Mee;Park, Yong-Jun;Park, Hanul
    • Korean Journal of Health Education and Promotion
    • /
    • v.33 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • Objectives: The aim of this study was to examine the effects of home-based cognitive physico-occupational therapy(HBCPOT) on cognitive function, depression, and quality of life in dementia patients, using a cognitive impairment model. Methods: The data was analysed for Mini-Mental State Examination-Korean version (MMSE-KC) for assessing cognitive function, Quality of life-Alzheimer's Disease (QOL-AD) and Geriatric Depression Scale (GDS) in 31 dementia patients who received home-based cognitive physico-occupational therapy for one hour once a week for 12 weeks by a trained occupational therapist at the Dementia Prevention and Management Center of Y-city during 20111-2013. Results: Among these 31 patients, 18(58.1%) were female, and 25(80.6%) had Alzheimer's Disease. After HBCPOT, the mean scores of MMSE-KC and QOL-AD were significantly improved, but GDS score was not significantly decreased. Conclusions: It was suggested that HBCPOT was effective in improving cognitive function and quality of life.

Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models

  • Huh, Eugene;Kim, Hyo Geun;Park, Hanbyeol;Kang, Min Seo;Lee, Bongyong;Oh, Myung Sook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.176-183
    • /
    • 2014
  • Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta ($A{\beta}$) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Ab-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in $A{\beta}$-induced neurotoxicity. In mice with $A{\beta}$-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Ab-induced neurotoxicity. Moreover, HCW, which had an $IC_{50}$ value of $79.7{\mu}g/ml$ for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.

Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in β-amyloid-treated neuronal cells

  • Hwang, Ji Yeon;Shim, Ji Seon;Song, Min-Young;Yim, Sung-Vin;Lee, Seung Eun;Park, Kang-Sik
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.278-284
    • /
    • 2016
  • Background: The ginsenoside Rb1 (Rb1) is the most abundant compound in the root of Panax ginseng. Recent studies have shown that Rb1 has a neuroprotective effect. However, the mechanisms underlying this effect are still unknown. Methods: We used stable isotope labeling with amino acids in cell culture, combined with quantitative mass spectrometry, to explore a potential protective mechanism of Rb1 in ${\beta}$-amyloid-treated neuronal cells. Results: A total of 1,231 proteins were commonly identified from three replicate experiments. Among these, 40 proteins were significantly changed in response to Rb1 pretreatment in ${\beta}$-amyloid-treated neuronal cells. Analysis of the functional enrichments and protein interactions of altered proteins revealed that actin cytoskeleton proteins might be linked to the regulatory mechanisms of Rb1. The CAP1, CAPZB, TOMM40, and DSTN proteins showed potential as molecular target proteins for the functional contribution of Rb1 in Alzheimer's disease (AD). Conclusion: Our proteomic data may provide new insights into the protective mechanisms of Rb1 in AD.

High-level production and initial crystallization of a Fe65 PTB domain (Fe65단백질의 한 PTB 도메인에 대한 과발현 및 초기 결정화)

  • Ro, Seung-Hyun;Ha, Nam-Chul
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.18-23
    • /
    • 2007
  • Fe65, a neuron-specific adaptor protein, has two phosphotyrosine binding (PTB) domains. The second PTB (PTB2) domain interacts with intracellular domain fragment (AICD) of amyloid beta precursor protein (APP). Recent studies suggested that tile complex is composed of AICD and Fe65 transactivates genes that are responsible for neuronal cell death in Alzheimer's disease (AD). Therefore, a compound inhibiting the interaction between Fe65 and AICD can be a drug candidate to treat AD. However, it remains unclear how Fe65 recognizes AICD at a molecular level. Here, we report high-level production of the PTB2 domain of Fe65 in the baculovirus system. We found that the baculovirus system is an efficient method to obtain the Fe65 PTB2 domain, compared with the bacterial and mammalian expression systems. The purified recombinant protein was used for crystallization to determine its crystal structure helping to understand the molecular mechanism of Fe65-dependent signaling and to design its inhibitors.

Ameliorating Effects of Cinnamomum loureiroi and Rosa laevigata Extracts Mixture against Trimethyltin-induced Learning and Memory Impairment Model (트리메틸틴 처리로 유도된 기억·학습 능력 손상 모델에 대한 계피와 금앵자 혼합추출물의 개선 효과)

  • Choi, Soo Jung;Kim, Cho Rong;Park, Chan Kyu;Gim, Min Chul;Choi, Jong Hun;Shin, Dong Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.353-360
    • /
    • 2017
  • Background: A critical features of Alzheimer's disease (AD) is cognitive dysfunction, which partly arises from decreased in acetylcholine levels. AD afftected brains are characterized by extensive oxidative stress, which is thought to be primarily induced by the amyloid beta ($A{\beta}$) peptide. In a previous study, Cinnamomum loureiroi tincture inhibited acetylcholinesterase (AchE) activity. That study identified AChE inhibitor in the C. loureiroi extract. Furthermore, the C. loureiroi extract enhanced memory in a trimethyltin (TMT)-induced model of cognitive dysfunction, as assessed via two behavioral tests. Rosa laevigata extract protected against oxidative stress-induced cytotoxicity. Administrating R. laevigata extracts to mice significantly reversed $A{\beta}$-induced learning and memory impairment, as shown in behavioral tests. Methods and Results: We conducted behavioral to examine the synergistic effects of C. loureiroi and R. laevigata extracts in inhibiting AChE and counteracting TMT-induced learning and memory losses. We also performed biochemical assays. The biochemical results showed a relationship between increased oxidative stress and cholinergic neurons damage in TMT-treated mice. Conclusions: A diet containing C. loureiroi and R. laevigata extracts ameliorated learning and memory impairments in the Y-maze and passive avoidance tests, and exerted synergistic inhibitory effect against AChE and lipid peroxidation.

Inhibitory Effects of Flavonoids Isolated from Leaves of Petasites japonicus on $\beta$-Secretase (BACE1)

  • Song, Kyung-Sik;Choi, Sun-Ha;Hur, Jong-Moon;Park, Hyo-Jun;Yang, Eun-Ju;MookJung, In-Hee;Yi, Jung-Hyun;Jun, Mi-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1165-1170
    • /
    • 2008
  • The deposition of the amyloid $\beta}$ ($A{\beta}$)-peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is critical feature in the progress of Alzheimer's disease (AD). Consequently, BACE1, a key enzyme in the production of $A{\beta}$, is a prime target for therapeutic intervention in AD. In the course of searching for BACE1 inhibitors from natural sources, the ethyl acetate fraction of Petasites japonicus showed potent inhibitory activity. Two BACE1 inhibitors quercetin (QC) and kaempferol 3-O-(6"-acetyl)-$\beta$-glucopyranoside (KAG) were isolated from P. japonicus by activity-guided purification. QC, in particular, non-competitively attenuated BACE1 activity with $IC_{50}$ value of $2.1{\times}10^{-6}\;M$ and $K_i$ value of $3.7{\times}10^{-6}\;M$. Both compounds exhibited less inhibition of $\alpha$-secreatase (TACE) and other serine proteases including chymotrypsin, trypsin, and elastase, suggesting that they ere relatively specific and selective inhibitors to BACE1. Furthermore, both compounds significantly reduced the extracellular $A{\beta}$ secretion in $APP_{695}$-transfected B103 cells.

Classification of 18F-Florbetaben Amyloid Brain PET Image using PCA-SVM

  • Cho, Kook;Kim, Woong-Gon;Kang, Hyeon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Jeong, Young-Jin;Kang, Do-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish ${\beta}$-Amyloid ($A{\beta}$) positive from $A{\beta}$ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). $^{18}F$-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for $A{\beta}$ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for $A{\beta}$ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify $^{18}F$-Florbetaben amyloid brain PET image for $A{\beta}$ positivity using PCA-SVM model, with no additional effects on GMM.

Region of Interest Analysis for Standardized Uptake Value Ratio of 18F-fludeoxyglucose PET: Mild Cognitive Impairment and Alzheimer's Disease (경도인지장애와 알츠하이머병 환자의 18F-fludeoxyglucose PET 표준 섭취계수율에 대한 체적 및 피질 표면 기반 관심영역 분석)

  • Kim, Seonjik;Yoon, Uicheul
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.237-242
    • /
    • 2018
  • $^{18}F$-fludeoxyglucose PET (FDG-PET) can help finding an abnormal metabolic activity in brain. In this study, we evaluated an efficiency of volume- and cortical surface-based analysis which were used to determine whether standardized uptake value ratio (SUVR) of FDG-PET was different among Alzheimer's disease (AD), mild cognitive impairment (MCI), and healthy control (HC). Each PET image was rigidly co-registered to the corresponding magnetic resonance imaging (MRI) using mutual information. All voxels of the co-registered PET images were divided by the mean FDG uptake of the cerebellum cortex which was thresholded by partial volume effect (>0.9). Also, the SUVR value of each vertex was linearly interpolated from volumetric SUVR image which was thresholded by gray matter partial volume effect (>0.1). Lobar mean values were calculated from both volume- and cortical surface-based SUVRs. Statistical analysis was conducted to compare two measures for AD, MCI and HC groups. Even though the results of volume (SUVR_vol) and cortical surface-based SUVR (SUVR_surf) analysis were not significantly different from each other, the latter would be better for detecting group differences in SUVR of PET.

Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ25-35-induced neurotoxicity in SH-SY5Y cells

  • Nam, Mi Na;Kim, Ji-Hyun;Lee, Ah Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.105-112
    • /
    • 2021
  • Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). Paeonia lactiflora (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ25-35-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ25-35-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 ㎍/mL) and PF (1, 5, and 10 ㎍/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ25-35 significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ25-35-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.