• Title/Summary/Keyword: Alzheimer′s disease (AD)

Search Result 458, Processing Time 0.023 seconds

Optimized production method of [18F]flortaucipir injection for imaging tau pathology in patients with Alzheimer's disease

  • Kyung Rok Nam;Sang Jin Han;Nam Hun Lee;Min Yong Lee;Youngduk Kim;Kyo Chul Lee;Yong Jin Lee;Young Hoon Ryu;Jae Yong Choi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Aggregated neurofibrillary tangles (NFTs) are a pathological hallmark in Alzheimer's disease (AD) and many radiopharmaceuticals targeting NFTs have been developed so far. Among these, [18F]flortaucipir (TAUVIDTM) is the first approved radiopharmaceutical in the Food and Drug Administration (FDA) to image tau pathology. In the present study, we describe the optimized radiosynthetic method for the routine production of [18F] flortaucipir using a commercialized automation module (i.e. GE TRACERlabTM FXFN pro). [18F]Flortaucipir was prepared by nucleophilic substitution from its N-tert-butoxycarbonyl protected nitro precursor, tertbutyl 7-(6-nitropyridin-3-yl)-5H-pyrido[4,3-b]indole-5-carboxylate, at 130℃ for 10 min in dimethyl sulfoxide. The mean radiochemical yield was 20 ± 4.3% (decay-corrected, n = 47) with the molar activity of 218 ± 32 GBq/µmol at the end of synthesis. The radiochemical purity was determined to be above 95%. The overall production time including quality control is approximately 100min. The final produced [18F]flortaucipir injection meets the USP criteria for quality control. Thus, this fully automated system is validated for clinical use.

Cordycepin protects against β-amyloid and ibotenic acid-induced hippocampal CA1 pyramidal neuronal hyperactivity

  • Yao, Li-Hua;Wang, Jinxiu;Liu, Chao;Wei, Shanshan;Li, Guoyin;Wang, Songhua;Meng, Wei;Liu, Zhi-Bin;Huang, Li-Ping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.483-491
    • /
    • 2019
  • Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer's disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. ${\beta}$-Amyloid ($A{\beta}$) and ibotenic acid (IBO)-induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in $A{\beta}$ + IBO-induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against $A{\beta}$ + IBO-induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine $A_1$ receptor-specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the $A{\beta}$ + IBO-induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of $A_1R$ is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.

Ginseng improves cognitive deficit via the RAGE/NF-κB pathway in advanced glycation end product-induced rats

  • Tan, Xiaobin;Gu, Junfei;Zhao, Bingjie;Wang, Shuyuan;Yuan, Jiarui;Wang, Chunfei;Chen, Juan;Liu, Jiping;Feng, Liang;Jia, Xiaobin
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.116-124
    • /
    • 2015
  • Background: Ginseng, the root of Panax ginseng (PG), is used widely as a herbal medicine to prevent and treat various diseases. Panax ginseng has pharmacological effects on neurodegenerative diseases such as Alzheimer's disease (AD). The present study evaluated the neuroprotective effects of PG and its possible neuroprotective mechanisms in advanced glycation end product (AGE)-induced AD in a rat model. Methods: Advanced glycation end products were injected bilaterally into the CA3 region of the rats' brains. The Morris water maze test and step-down type passive avoidance test were performed to evaluate their memory and cognitive abilities. The oxidation indexes in the hippocampus were detected. Immunohistochemistry was conducted to visualize the receptors for advanced glycation end products (RAGEs) and nuclear factor-kappa-light-chain-enhancer of activated B cell (NF-${\kappa}B$). Results: Behavioral results showed that PG (1 g/kg, 0.5 g/kg, and 0.25 g/kg) significantly shortened the escape latency, remarkably increased the number of crossing times, significantly decreased the number of errors, and prolonged the latency in rats with AGE-induced AD. Panax ginseng also significantly reduced the malondialdehyde level, increased the glutathione content, and increased superoxide dismutase activity in the hippocampus. Panax ginseng significantly decreased the expression of RAGE and NF-${\kappa}B$. The blockade of anti-RAGE antibody could significantly reduce AGE-induced impairments and regulate these expressions. Conclusion: Our results demonstrated that PG significantly inhibits AGE-induced memory impairment and attenuates Alzheimer-like pathophysiological changes. These neuroprotective effects of PG may be associated with the RAGE/NF-${\kappa}B$ pathway. Our results provided the experimental basis for applying PG in preventing and treating AD.

20(S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis

  • Lin, Kaili;Sze, Stephen Cho-Wing;Liu, Bin;Zhang, Zhang;Zhang, Zhu;Zhu, Peili;Wang, Ying;Deng, Qiudi;Yung, Ken Kin-Lam;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.325-333
    • /
    • 2021
  • Background: Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods: We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results: Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion: PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.

Neuroprotective effects of gossypin on beta-amyloid- and oxidative stress-induced toxicity in primary cultured rat cortical cells

  • Yoon, In-Jae;Lee, Kwang-Heun;Cho, Jung-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.142.1-142.1
    • /
    • 2003
  • Excessive accumulation of beta-amyloid (A$\beta$) peptides is one of the leading hypotheses to explain neurodegenerative processes in Alzheimer's disease (AD). It has been suggested that $A\beta$ toxicity is associated with increases in reactive oxygen species. whose overproduction may in turn initiate neurotoxic events. (omitted)

  • PDF

Effect of Mycelial Extract of Clavicorona pyxidata on the Production of Amyloid $\beta$-Peptide and the Inhibition of Endogenous $\beta$-Secretase Activity in vitro

  • Lee, Tae-Hee;Park, Young-Il;Han, Yeong-Hwan
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.665-670
    • /
    • 2006
  • Amyloid $\beta$-peptide (A$\beta$), which is a product of the proteolytic effect of $\beta$-secretase (BACE) on an amyloid precursor protein, is closely associated with Alzheimer's disease (AD) pathogenesis. There is sufficient evidence to suggest that a BACE inhibitor may reduce A$\beta$ levels, thus decreasing the risk of AD. In a previous study, an extract of Clavicorona pyxidata DGUM 29005 mycelia was found to inhibit the production of a soluble $\beta$-amyloid precursor protein (s$\beta$APP), A$\beta$, and BACE in neuronal cell lines. We sought to determine whether this mycelial extract exerts the same effect in human rhabdomyosarcoma A-204 and rat pheochromocytoma PC-12 cells. We found that the production of A$\beta$ decreased in a dose-dependent manner in the presence of the mycelial extract and that the concentration of A$\beta$ never exceeded $50{\mu}g/ml$. The presence of sAPP was detected in every culture medium to which the mycelial extract had been added and its concentration remained the same, regardless of the concentration of the extract used. Endogenous $\beta$-secretase activity in A-204 and PC-12 cellular homogenates also decreased in the presence of this extract. These cells, in culture, were not susceptible to the cytotoxic activity of the mycelial extract.

The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease (저항성 운동이 알츠하이머 형질전환 생쥐 뇌의 베타 아밀로이드 대사와 인지기능에 미치는 영향)

  • Jang, Yong-Chul;Koo, Jung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.418-428
    • /
    • 2020
  • The aim of this study was to investigate the effect of resistance exercise(RE) on beta-amyloid(Aβ) metabolism, neuronal cell death, and cognitive function in the transgenic mice model of Alzheimer's disease(AD). Fourteen transgenic(tg) mice and fourteen non-transgenic(non-tg) mice were divided into four groups: (1)non-tg-control(NTC, n=7) (2)non-tg-RE(NTRE, n=7) (3)tg-control(TC, n=7), and (4)tg-RE(TRE, n=7). The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. The groups with RE were performed to progressive RE on ladder equipment for 8 weeks. After then, the cognitive function was measured by using the water maze test, and Aβ metabolism-related proteins, neuronal cell death, and SIRT1/PGC-1α pathway were also measured. Here, we found escape latency and time were significantly increased in the TC compared to the NTC group, but it was significantly reduced in the TRE group, indicating RE may ameliorate cognitive dysfunction. Next, we found an increased in Aβ protein of TC compared to NTC, but it was significantly reduced in the TRE group following RE. In neuronal cell death, Bcl-2 was also significantly decreased and Bax was significantly increased in the TC compared to the NTC group, but RE can increase Bcl-2 and reduce Bax, which may elevate the ratio of Bcl-2/Bax. We further found a decrease in the level of ADAM10 and RARβ protein was significantly increased whereas increased in ROCK1 and BACE1 expression level was significantly reduced following RE in the TRE compared to the TC group. In addition, the level of SIRT1/PGC-1α proteins was decreased in the TC group compared to NTC group, but, these markers were significantly increased in the TRE group following RE. Therefore, our finding indicated that RE may ameliorate cognitive deficits by reducing Aβ protein and neuronal cell death via regulating SIRT1/PGC-1α, amyloidogenic pathway, and non-amyloidogenic pathway, which may play a role in an effective strategy for AD.

Association between Medial Temporal Atrophy, White Matter Hyperintensities, Neurocognitive Functions and Activities of Daily Living in Patients with Alzheimer's Disease and Mild Cognitive Impairment (알츠하이머병 및 경도인지장애 환자에서 내측두엽 위축, 대뇌백질병변, 신경인지기능과 일상생활 수행능력과의 연관성)

  • An, Min hyuk;Kim, Hyun;Lee, Kang Joon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.29 no.1
    • /
    • pp.67-76
    • /
    • 2021
  • Objectives : The aim of this study was to compare activities of daily living (ADLs) according to degenerative changes in brain [i.e., medial temporal lobe atrophy (MTA), white matter hyperintensities] and to examine the association between neurocognitive functions and ADLs in Korean patients with dementia due to Alzheimer's disease (AD) and mild cognitive impairment (MCI). Methods : Participants were 111 elderly subjects diagnosed with AD or MCI in this cross-sectional study. MTA in brain MRI was rated with standardized visual rating scales (Scheltens scale) and the subjects were divided into two groups according to Scheltens scale. ADLs was evaluated with the Korean version of Blessed Dementia Scale-Activity of daily living (BDS-ADL). Neurocognitive function was evaluated with the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease assessment packet (CERAD-K). Independent t-test was performed to compare ADLs with the degree of MTA. Pearson correlation and hierarchical multiple regression analyses were performed to analyze the relationship between ADLs and neurocognitive functions. Results : The group with high severity of the MTA showed significantly higher BDS-ADL scores (p<0.05). The BDS-ADL score showed the strongest correlation with the word list recognition test among sub-items of the CERAD-K test (r=-0.568). Findings from the hierarchical multiple regression analysis revealed that the scores of MMSE-K and word list recognition test were factors that predict ADLs (F=44.611, p<0.001). Conclusions : ADLs of AD and MCI patients had significant association with MTA. Our study, which identifies factors correlated with ADLs can provide useful information in clinical settings. Further evaluation is needed to confirm the association between certain brain structures and ADLs.

Protective Effect of Wheat Bran Extract against β-Amyloid-induced Cell Death and Memory Impairment (베타아밀로이드로 유도된 신경세포 사멸과 기억력 손상에 대한 밀기울추출물의 보호효과)

  • Lee, Chan;Park, Gyu-Hwan;Lee, Jong-Won;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • Objectives : The aim of this study is to examine the neuroprotective effect of wheat bran extract (WBE) against ${\beta}$-amyloid ($A{\beta}$)-induced apoptotic cell death in SH-SY5Y human neuroblastoma cells and memory impairment in triple transgenic animal model's of Alzheimer's disease (3xTg AD mice). Methods : In SH-SY5Y cells, MTT assay and TUNEL staining were conducted to evaluate the protective effect of WBE against $A{\beta}_{25-35}$-induced neurotoxicity and apoptosis. Alterations in mitochondrial transmembrane potential (MMP), expression of proapoptotic Bax and antiapoptotic Bcl-2 proteins, cleavage of PARP, and brain-derived neurotrophic factor (BDNF) levels were analyzed to elucidate the neuroprotective mechanism of WBE. To further investigate the memory enhancing effect of WBE, Morris water maze test was performed in 3xTg AD mice. Results : In SH-SY5Y cells, WBE protected against $A{\beta}_{25-35}$-caused cytotoxicity and apoptosis as shown by the restoration of cell viability in MTT assay and inhibition of DNA fragmentation in TUNEL staining. $A{\beta}_{25-35}$-induced apoptotic signals such as dissipation of MMP, decreased Bcl-2/Bax ratio, and cleavage of PARP were suppressed by WBE. Moreover, WBE up-regulated the protein levels of BDNF, which seemed to be mediated by activation of cAMP response element-binding protein (CREB). In 3xTg AD mice, oral administration of WBE attenuated learning and memory deficit as verified by reduced mean escape latency in water maze test. Conclusions : WBE protects neuronal cells from $A{\beta}_{25-35}$-induced apoptotic cell death and restores learning and memory impairments in 3xTg AD mice. These findings suggest that WBE exhibit neuroprotective potential for the management of AD.

Protective effects of a chalcone derivative against Aβ-induced oxidative stress and neuronal damage

  • Kim, Mi-Jeong;Lee, Yoo-Hyun;Kwak, Ji-Eun;Na, Young-Hwa;Yoon, Ho-Geun
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.730-734
    • /
    • 2011
  • Amyloid ${\beta}$-peptide ($A{\beta}$-peptide)-induced oxidative stress is thought to be a critical component of the pathophysiology of Alzheimer's disease (AD). New chalcone derivatives, the Chana series, were recently synthesized from the retrochalcones of licorice. In this study, we investigated the protective effects of the Chana series against neurodegenerative changes in vitro and in vivo. Among the Chana series, Chana 30 showed the highest free radical scavenging activity (90.7%) in the 1,1-diphenyl-2- picrylhydrazyl assay. Chana 30 also protected against $A{\beta}$-induced neural cell injury in vitro. Furthermore, Chana 30 reduced the learning and memory deficits of $A{\beta}_{1-42}$-peptide injected mice. Taken together, these results suggest that Chana 30 may be a promising candidate as a potent therapeutic agent against neurodegenerative diseases.