Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.11.730

Protective effects of a chalcone derivative against Aβ-induced oxidative stress and neuronal damage  

Kim, Mi-Jeong (Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine)
Lee, Yoo-Hyun (Department of Food Science and Nutrition, The University of Suwon)
Kwak, Ji-Eun (Department of Food Science and Nutrition, The University of Suwon)
Na, Young-Hwa (College of Pharmacy, CHA University)
Yoon, Ho-Geun (Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine)
Publication Information
BMB Reports / v.44, no.11, 2011 , pp. 730-734 More about this Journal
Abstract
Amyloid ${\beta}$-peptide ($A{\beta}$-peptide)-induced oxidative stress is thought to be a critical component of the pathophysiology of Alzheimer's disease (AD). New chalcone derivatives, the Chana series, were recently synthesized from the retrochalcones of licorice. In this study, we investigated the protective effects of the Chana series against neurodegenerative changes in vitro and in vivo. Among the Chana series, Chana 30 showed the highest free radical scavenging activity (90.7%) in the 1,1-diphenyl-2- picrylhydrazyl assay. Chana 30 also protected against $A{\beta}$-induced neural cell injury in vitro. Furthermore, Chana 30 reduced the learning and memory deficits of $A{\beta}_{1-42}$-peptide injected mice. Taken together, these results suggest that Chana 30 may be a promising candidate as a potent therapeutic agent against neurodegenerative diseases.
Keywords
Alzheimer's disease; Chalcone derivative; Cognitive function; Neuroprotective effect; ${\beta}$-amyloid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Boyd-Kimball, D., Sultana, R., Mohmmad-Abdul, H. and Butterfield, D. A. (2004) Rodent Abeta(1-42) exhibits oxidative stress properties similar to those of human Abeta (1-42): Implications for proposed mechanisms of toxicity. J. Alzheimers Dis. 6, 515-525.   DOI
2 Dumont, M., Lin, M. T. and Beal, M. F. (2010) Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer's disease. J. Alzheimers Dis. 20(Suppl 2), S633-643.   DOI
3 Dragicevic, N., Smith, A., Lin, X., Yuan, F., Copes, N., Delic, V., Tan, J., Cao, C., Shytle, R. D. and Bradshaw, P. C. (2011) Green Tea Epigallocatechin-3-Gallate (EGCG) and Other Flavonoids Reduce Alzheimer's Amyloid-Induced Mitochondrial Dysfunction. J. Alzheimers Dis. 1, 1-15.
4 Heo, H. J. and Lee, C. Y. (2005) Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J. Agric. Food Chem. 53, 1984-1989.   DOI   ScienceOn
5 Xue, H. Y., Gao, G. Z., Lin, Q. Y., Jin, L. J. and Xu, Y. P. (2011) protective effects of aucubin on $H_2O_2$-induced apoptosis in PC12 cells. Phytother. Res. doi:10.1002/ptr.3562. [Epub ahead of print]   DOI   ScienceOn
6 Yan, J. J., Cho, J. Y., Kim, H. S., Kim, K. L., Jung, J. S., Huh, S. O., Suh, H. W., Kim, Y. H. and Song, D. K. (2001) Protection against ${\beta}$-amyloid peptide toxicity in vivo with long-term administration on ferulic acid. Br. J. Pharmacol. 133, 89-96.   DOI   ScienceOn
7 Fu, A. L., Dong, Z. H. and Sun, M. R. (2006) Protective effect of N-acetyl-L-cysteine of amyloid ${\beta}$-peptide-induced learning and memory deficits in mice. Brain Res. 1109, 201-206.   DOI   ScienceOn
8 Tatton, W. G. (1993) Selegiline can mediate neuronal rescue rather than neuronal protection. Movement Disorders 8(Suppl 1), s20-s30.   DOI   ScienceOn
9 Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200.   DOI   ScienceOn
10 Shen, Z., Wangn, G. and Linn, S. Z. (1990) Two-way shuttle box avoidance conditioning and brain NADH in rats. Physiol. Behav. 48, 515-517.   DOI   ScienceOn
11 Avdulov, N. A., Chochina, S. V., Igbavboa, U., O'Hare, E. O., Schroeder, F., Cleary, J. P. and Wood, W. G. (1997) Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J. Neurochem. 68, 2086-2091.
12 Butterfield, D. A. (1997) Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem. Res. Toxicol. 10, 495-506.   DOI   ScienceOn
13 Castellani, R., Hirai, K., Aliev, G., Drew, K. L., Nunomura, A., Takeda, A., Cash, A. D., Obrenovich, M. E., Perry, G. and Smith, M. A. (2002) Role of mitochondrial dysfunction in Alzheimer's disease. J. Neurosci. Res. 70, 357-360.   DOI   ScienceOn
14 Haraguchi, H., Ishikawa, H., Mizutani, K., Tamura, Y. and jinoshita, T. (1998) Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflate. Bioorg. Med. Chem. 6, 339-347.   DOI   ScienceOn
15 Franceschelli, S., Pesce, M., Vinciguerra, I., Ferrone, A., Riccione, G., Antonia, P., Grilli, A., Felaco, M. and Speranza, L. (2011) Licocalchone-C extracted from Glycyrrhiza Glabra inhibits lipopolysaccharide-interferon-${\gamma}$ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules. 16, 5720-5734.   DOI
16 Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K. and Kinoshita, T. (1998) Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate. Phytochemistry 48, 124-129.
17 Bak, E. J., Park, H. G., Lee, C. H., Lee, T. I., Woo, G. H., Na, Y. H. and Cha, J. H. (2011) Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4 and adipocyte differenciation in vitro. BMB Rep. 44, 410-414.   DOI   ScienceOn
18 Im, S. E., Yoon, H., Nam, T. G., Heo, H. J., Lee, C. Y. and Kim, D. O. (2010) Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells. J. Med. Food 13, 779-784.   과학기술학회마을   DOI   ScienceOn
19 Yankner, B., Dawes, L., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L. and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245, 417-420.   DOI
20 Zhu, X., Lee, H. G., Perry, G. and Smith, M. A. (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim. Biophys. Acta. 1772, 494-502.   DOI   ScienceOn
21 Markesbery, W. R. (1997) Oxidative stress hypothesis in Alzheimer disease. Free Radic. Biol. Med. 23, 134-147.   DOI   ScienceOn
22 Butterfield, D. A., Drake, J., Pocernich, C. and Castegna, A. (2001) Evidence of oxidative damage in Alzheimer's disease brain: central role of amyloid beta-peptide. Trens Mol. Med. 7, 548-554.   DOI   ScienceOn
23 Butterfield, D. A. (2003) Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer's disease brain: mechanisms and consequences. Curr. Med. Chem. 10, 2651-2659.   DOI   ScienceOn
24 Butterfield, D. A., Galvan, V., Lange, M. B., Tang, H., Sowell, R. A., Spilman, P., Fombonne. J., Gorostiza, O., Zhang, J., Sultana, R. and Bredesen, D. E. (2010) In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic. Biol. Med. 48, 136-144.   DOI   ScienceOn