• Title/Summary/Keyword: Alzheimer′s disease(AD)

검색결과 460건 처리시간 0.026초

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Diagnosis of Alzheimer's Disease using Wrapper Feature Selection Method

  • 비슈나비 라미네니;권구락
    • 스마트미디어저널
    • /
    • 제12권3호
    • /
    • pp.30-37
    • /
    • 2023
  • Alzheimer's disease (AD) symptoms are being treated by early diagnosis, where we can only slow the symptoms and research is still undergoing. In consideration, using T1-weighted images several classification models are proposed in Machine learning to identify AD. In this paper, we consider the improvised feature selection, to reduce the complexity by using wrapping techniques and Restricted Boltzmann Machine (RBM). This present work used the subcortical and cortical features of 278 subjects from the ADNI dataset to identify AD and sMRI. Multi-class classification is used for the experiment i.e., AD, EMCI, LMCI, HC. The proposed feature selection consists of Forward feature selection, Backward feature selection, and Combined PCA & RBM. Forward and backward feature selection methods use an iterative method starting being no features in the forward feature selection and backward feature selection with all features included in the technique. PCA is used to reduce the dimensions and RBM is used to select the best feature without interpreting the features. We have compared the three models with PCA to analysis. The following experiment shows that combined PCA &RBM, and backward feature selection give the best accuracy with respective classification model RF i.e., 88.65, 88.56% respectively.

CT105로 유도된 신경모세포종 세포주에서 세심탕의 항치매 효과 (Effect on Alzheimer's Disease by Sesim-tang in CT105-overexpressed SK-N-SH Cell Lines)

  • 권형수;박치상;박창국
    • 대한한의학회지
    • /
    • 제25권2호
    • /
    • pp.138-150
    • /
    • 2004
  • Objectives : Alzheimer's disease (AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the biggest problem in public health service. Although a variety of oriental prescriptions, including Sesim-tang, have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. The present study investigated the effects of Sesim-tang on apoptotic cell death induced by CT105 (carboxy terminal 105 amino acid peptide fragment of APP) overexpression in SK-N-SH neuroblastoma cell lines. Methods: We studied the regenerative and inhibitory effects on Alzheimer's disease in CT105-induced SK-N-SH cell lines by Sesim-tang water extract. We examined for cell morphological pattern, DNA fragmentation, LDH activity assay, zymography assay, and immunohistochemistric analysis. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. Results: Findings from our experiments have shown that Sesim-tang inhibits the synthesis or activities of CT105, which has neurotoxicities and apoptotic activities in the cell line. In addition, pretreatment with Sesim-tang ($>50\mu\textrm{g}/ml$ for 12 hours) partially prevented CT105-induced cytotoxicity in SK-N-SH cell lines. SK-N-SH cell lines overexpressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase-contrast microscope and LDH activity measurements in the culture media, the CT105-induced cell death was significantly inhibited by Sesim-tang water extract. Sesim-tang was found to reduce the expression of APP and caspase-3 induced by CT105 in SK-N-SH cell lines and in rat hippocampus. Conclusions: As the result of this study, in the Sesim-tang group, apoptosis in the nervous system is inhibited, the repair against the degeneration of SK-N-SH cell lines by CT105 expression is promoted. Hence, Sesim-tang may be beneficial for the treatment of AD.

  • PDF

Raw Inonotus obliquus polysaccharide counteracts Alzheimer's disease in a transgenic mouse model by activating the ubiquitin-proteosome system

  • Shumin Wang;Kaiye Dong;Ji Zhang;Chaochao Chen;Hongyan Shuai;Xin Yu
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1128-1142
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Inonotus obliquus has been used as antidiabetic herb around the world, especially in the Russian and Scandinavian countries. Diabetes is widely believed to be a key factor in Alzheimer's disease (AD), which is widely considered to be type III diabetes. To investigate whether I. obliquus can also ameliorate AD, it would be interesting to identify new clues for AD treatment. We tested the anti-AD effects of raw Inonotus obliquus polysaccharide (IOP) in a mouse model of AD (3×Tg-AD transgenic mice). MATERIALS/METHODS: SPF-grade 3×Tg-AD mice were randomly divided into three groups (Control, Metformin, and raw IOP groups, n = 5 per group). β-Amyloid deposition in the brain was analyzed using immunohistochemistry for AD characterization. Gene and protein expression of pertinent factors of the ubiquitin-proteasome system (UPS) was determined using real-time quantitative polymerase chain reaction and Western blotting. RESULTS: Raw IOP significantly reduced the accumulation of amyloid aggregates and facilitated UPS activity, resulting in a significant reduction in AD-related symptoms in an AD mouse model. The presence of raw IOP significantly enhanced the expression of ubiquitin, E1, and Parkin (E3) at both the mRNA and protein levels in the mouse hippocampus. The mRNA level of ubiquitin carboxyl-terminal hydrolase isozyme L1, a key factor involved in UPS activation, also increased by approximately 50%. CONCLUSIONS: Raw IOP could contribute to AD amelioration via the UPS pathway, which could be considered as a new potential strategy for AD treatment, although we could not exclude other mechanisms involved in counteracting AD processing.

Characterization of age- and stage-dependent impaired adult subventricular neurogenesis in 5XFAD mouse model of Alzheimer's disease

  • Hyun Ha Park;Byeong-Hyeon Kim;Seol Hwa Leem;Yong Ho Park;Hyang-Sook Hoe;Yunkwon Nam;Sujin Kim;Soo Jung Shin;Minho Moon
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.520-525
    • /
    • 2023
  • Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aβ. Although Aβ-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aβ-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aβ accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aβ accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aβ deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression.

A voxel based morphometry study in Alzheimer's disease

  • Rahyeong Juh;Taesuk Suh;Boyoung Choe;Lee, Changuk
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.46-46
    • /
    • 2003
  • Several MRI studies have reported reductions in temporal lobe volumes in Alzheimer´s disease (AD). Measures have been usually obtained with regions of interest (ROI) drawn manually on selected medial and lateral portions of the temporal lobes, with variable choices of anatomical borders across different studies. We used the automated voxel based morphometry (VBM) approach to investigate gray matter abnormalities over the entire extension of the temporal lobe in 11 AD patients (MMSE 14 - 25) and 11 healthy controls. Foci of significantly reduced gray matter volume in AD patients were detected in both medial and lateral temporal regions, most significantly in the right and left posterior parahippocampal gyri. At a more flexible statistical threshold (P<0.001, uncorrected for multiple comparisons), circumscribed foci of significant gray matter reduction were also detected in the right amygdala/enthorinal cortex, the anterior and posterior borders of the superior temporal gyrus bilaterally, and the anterior portion of the left middle temporal gyrus. These VBM results confirm previous findings of temporal lobe atrophic changes in AD, and suggest that these abnormalities may be confined to specific sites within that lobe, rather than showing a widespread distribution.

  • PDF

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer's Disease

  • Yoon, Sang-Sun;AhnJo, Sang-Mee
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.245-255
    • /
    • 2012
  • Amyloid-${\beta}$ peptide ($A{\beta}$) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduction of $A{\beta}$ in the brain. Since accumulation of $A{\beta}$ depends on the rate of its synthesis and clearance, the metabolic pathway of $A{\beta}$ in the brain and the whole body should be carefully explored for AD research. Although the synthetic pathway of $A{\beta}$ is equally important, we summarize primarily the clearance pathway in this paper because the former has been extensively reviewed in previous studies. The clearance of $A{\beta}$ from the brain is accomplished by several mechanisms which include non-enzymatic and enzymatic pathways. Nonenzymatic pathway includes interstitial fluid drainage, uptake by microglial phagocytosis, and transport across the blood vessel walls into the circulation. Multiple $A{\beta}$-degrading enzymes (ADE) implicated in the clearance process have been identified, which include neprilysin, insulin-degrading enzyme, matrix metalloproteinase-9, glutamate carboxypeptidase II and others. A series of studies on $A{\beta}$ clearance mechanism provide new insight into the pathogenesis of AD at the molecular level and suggest a new target for the development of novel therapeutics.

ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease

  • Jeong, Woojin;Lee, Hyein;Cho, Sukhee;Seo, Jinsoo
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.739-746
    • /
    • 2019
  • Significant knowledge about the pathophysiology of Alzheimer's disease (AD) has been gained in the last century; however, the understanding of its causes of onset remains limited. Late-onset AD is observed in about 95% of patients, and APOE4-encoding apolipoprotein E4 (ApoE4) is strongly associated with these cases. As an apolipoprotein, the function of ApoE in brain cholesterol transport has been extensively studied and widely appreciated. Development of new technologies such as human-induced pluripotent stem cells (hiPSCs) and CRISPR-Cas9 genome editing tools have enabled us to develop human brain model systems in vitro and readily manipulate genomic information. In the context of these advances, recent studies provide strong evidence that abnormal cholesterol metabolism by ApoE4 could be linked to AD-associated pathology. In this review, we discuss novel discoveries in brain cholesterol dysregulation by ApoE4. We further elaborate cell type-specific roles in cholesterol regulation of four major brain cell types, neurons, astrocytes, microglia, and oligodendrocytes, and how its dysregulation can be linked to AD pathology.

A Comparison Between the Performances of Verbal and Nonverbal Fluency Tests in Discriminating Between Mild Cognitive Impairments and Alzheimer's Disease Patients and Their Brain Morphological Correlates

  • Seyul Kwak;Seong A Shin;Hyunwoong Ko;Hairin Kim;Dae Jong Oh;Jung Hae Youn;Jun-Young Lee;Yu Kyeong Kim
    • 대한치매학회지
    • /
    • 제21권1호
    • /
    • pp.17-29
    • /
    • 2022
  • Background and Purpose: Verbal and nonverbal fluency tests are the conventional methods for examining executive function in the elderly population. However, differences in impairments result in fluency tests in patients with mild cognitive impairments (MCIs) and Alzheimer's disease (AD) and in neural correlates underlying the tests still necessitate concrete evidence. Methods: We compared the test performances in 27 normal controls, 28 patients with MCI, and 20 with AD, and investigated morphological changes in association with the test performances using structural magnetic imaging. Results: Patients with AD performed poorly across all the fluency tests, and a receiver operating characteristics curve analysis revealed that only category fluency test discriminated all the 3 groups. Association, category, and design fluency tests involved temporal and frontal regions, while letter fluency involved the cerebellum and caudate. Conclusions: Category fluency is a reliable measure for screening patients with AD and MCI, and this efficacy might be related to morphological correlates that underlie semantic and executive processing.

뇌척수액과 말초혈액 내 알츠하이머병의 생화학적 생체표지자 (Biochemical Biomarkers for Alzheimer's Disease in Cerebrospinal Fluid and Peripheral Blood)

  • 이영민;최원정;박민선;김어수
    • 노인정신의학
    • /
    • 제16권1호
    • /
    • pp.17-23
    • /
    • 2012
  • The diagnosis of Alzheimer's disease (AD) is still obscure even to specialists. To improve the diagnostic accuracy, to find at-risk people as early as possible, to predict the efficacy or adverse reactions of pharmacotherapy on an individual basis, to attain more reliable results of clinical trials by recruiting better defined participants, to prove the disease-modifying ability of new candidate drugs, to establish prognosis-based therapeutic plans, and to do more, is now increasing the need for biomarkers for AD. Among AD-related biochemical markers, cerebrospinal beta-amyloid and tau have been paid the most attention since they are materials directly interfacing the brain interstitium and can be obtained through the lumbar puncture. Level of beta-amyloid is reduced whereas tau is increased in cerebrospinal fluid of AD patients relative to cognitively normal elderly people. Remarkably, such information has been found to help predict AD conversion of mild cognitive impairment. Despite inconsistent findings from previous studies, plasma beta-amyloid is thought to be increased before the disease onset, but show decreasing change as the disease progress. Regarding other peripheral biochemical markers, omics tools are being widely used not only to find useful biomarkers but also to generate novel hypotheses for AD pathogenesis and to lead new personalized future medicine.