• Title/Summary/Keyword: Alveolar bone graft

Search Result 254, Processing Time 0.093 seconds

Consequence of Synthetic Bone Substitute Used for Alveolar Cleft Graft Reconstruction (Preliminary Clinical Study)

  • Rawaa Y. Al-Rawee;Bashar Abdul-Ghani Tawfeeq;Ahmed Mothafar Hamodat;Zaid Salim Tawfek
    • Archives of Plastic Surgery
    • /
    • v.50 no.5
    • /
    • pp.478-487
    • /
    • 2023
  • Background The outcome of alveolar grafting with synthetic bone substitute (Osteon III) in various bone defect volumes is highlighted. Methods A prospective study was accomplished on 55 patients (6-13 years of age) with unilateral alveolar bone cleft. Osteon III, consisting of hydroxyapatite and tricalcium phosphate, is used to reconstruct the defect. Alveolus defect diameter was calculated before surgery (V1), after 3 months (V2), and finally after 6 months (V3) postsurgery. In the t-test, a significant difference and correlation between V1, V2, and V3 are stated. A p-value of 0.01 is considered a significant difference between parameters. Results The degree of cleft is divided into three categories: small (9 cases), medium (20 patients), and large (26 cases).The bone volume of the clefted site is divided into three steps: volume 1: (mean 18.1091 mm3); step 2: after 3 months, volume 2 resembles the amount of unhealed defect (mean 0.5109 mm3); and the final bone volume assessment is made after 6 months (22.5455 mm3). Both show statistically significant differences in bone volume formation. Conclusion An alloplastic bone substitute can also be used as a graft material because of its unlimited bone retrieval. Osteon III can be used to reconstruct the alveolar cleft smoothly and effectively.

Evaluation of augmented alveolar bone and dental implant after autogenous onlay block bone graft (ORIGINAL ARTICLE - 자가 온레이 블럭골 이식 후 증대된 치조골과 임플란트의 평가)

  • Shet, Uttom Kumar;Cho, Min-Sung;Hur, Jung-Woo;Oh, Chul-Jung;Chung, Kwang;Park, Hong-Ju;Kook, Min-Suk;Jung, Seung-Gon;Oh, Hee-Kyun
    • The Journal of the Korean dental association
    • /
    • v.50 no.6
    • /
    • pp.329-338
    • /
    • 2012
  • Introduction: The purpose of this study is to evaluate the clinical results of vertical alveolar ridge augmentation using autogenous block bone graft, especially resorption rate, and outcomes of dental implants placed in the grafted site. Patients and Methods: Medical records and radiographs were reviewed. Twenty-seven patients who have been received the autogenous block bone graft which harvested from chin, ramus, and ilium, and the implant installation on 31 areas(22 maxillas and 9 mandibles) were included. Eight implants were installed simultaneously at the time of bone graft in 4 patients, and 65 implants were installed after 4.9 months(range 2~18 months) of autogenous block bone graft in 23 patients. The resorption amount and rate of augmented bone, and the success and survival rates implants were evaluated. Results: Mean height of the augmented block bone was $5.9{\pm}2.3mm$(range from 2.5 to 13.0 mm). Mean follow-up period after block bone graft was 30.4 months(range from 16 to 55 months). Mean resorption of the augmented block bone was $2.0{\pm}1.5mm$ (range from 0.5 to 7.24 mm). The success and survival rates of the implants were 78.1 % and 98.6%, respectively. Conclusion: This study indicates that the autogenous block bone graft is a useful and stable method for alveolar ridge augmentation for dental implant. And more augmentation is needed to compensate the resorption of the grafted bone.

Volumetric stability of autogenous bone graft with mandibular body bone: cone-beam computed tomography and three-dimensional reconstruction analysis

  • Lee, Hyeong-Geun;Kim, Yong-Deok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.5
    • /
    • pp.232-239
    • /
    • 2015
  • Objectives: The purpose of this study was to estimate the volumetric change of augmented autobone harvested from mandibular body cortical bone, using cone-beam computed tomography (CBCT) and three-dimensional reconstruction. In addition, the clinical success of dental implants placed 4 to 6 months after bone grafting was also evaluated. Materials and Methods: Ninety-five patients (48 men and 47 women) aged 19 to 72 years were included in this study. A total of 128 graft sites were evaluated. The graft sites were divided into three parts: anterior and both posterior regions of one jaw. All patients included in the study were scheduled for an onlay graft and implantation using a two-stage procedure. The dental implants were inserted 4 to 6 months after the bone graft. Volumetric stability was evaluated by serial CBCT images. Results: No major complications were observed for the donor sites. A total of 128 block bones were used to augment severely resorbed alveolar bone. Only 1 of the 128 bone grafts was resorbed by more than half, and that was due to infection. In total, the average amount of residual grafted bone after resorption at the recipient sites was $74.6%{\pm}8.4%$. Conclusion: Volumetric stability of mandibular body autogenous block grafts is predictable. The procedure is satisfactory for patients who want dental implants regardless of atrophic alveolar bone.

Assessment of the permanent canine bone support after secondary bone graft In UCLP patients (편측성 순구개열 환자에서 이차 골이식후 맹출된 영구 견치의 치조골 지지도에 관한 연구)

  • Park, Ki-Tae
    • The korean journal of orthodontics
    • /
    • v.31 no.6 s.89
    • /
    • pp.601-610
    • /
    • 2001
  • The purpose of this retrospective study was to evaluate the level oi alveolar bone support of the erupted Permanent canine through the reconstructed cleft region compared to the contralateral canine on the non-cleft side. This study was limited to children with complete unilateral cleft lip and palate who underwent secondary alveolar iliac bone gvaft and the apices of the erupted canine roots were closed at the time of evaluation. With these criteria the study included 21 children whose average age at the time of bone graft reconstruction was 9.8 years, with a minimum of 12.4 years of age at the time of the evaluation. The study was limited to the use of iliac cancellous bone as the autograft material for reconstruction of the alveolar cleft. Cranial bone graft and other autogenous bone sources were excluded. The periapical radiographs were used to evaluate alveolar bone level of each canine. The percentages of root supported by the bone were established by dividing the amount of root covered with the bone by the anatomic root length. The canine oi the non-cleft side was used as an internal control and the canine on the cleft side was used as an experimental. There was a statistically significant difference in the alveolar bone support ratio between the control ($92.9\%$) and experimental canines ($8.7\%$). An average of $95\%$ level of alveolar bone support was achieved for the experimental canine in comparison to the control canine. Neither the presence of lateral incisor, nor the stage of root development of the canine at the time of the bone graft appeared to have affected the alveolar bone support ratio of the canine after the secondary bone graft.

  • PDF

Clinical Study on the Alveolar Bone Repair Capacity of Dentin Matrix Block (Dentin Matrix Block의 치조골 복원 능력에 관한 임상적 연구)

  • Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • In the oral and maxillofacial area, bone defects are created by various reasons and demand for bone grafts, while dental implant implantation has been increased consistently. To solve these problems, there has been development of autogenous tooth-bone graft material (AutoBT$^{(R)}$, Korea Tooth Bank Co., Korea), and we have collected ground reasons to substitute free autobone graft with this material in clinical use. This autogenous tooth-bone graft material is produced in powder type and block type. Block type is useful in esthetic reconstruction of the defect site and vertical and horizontal augmentation of alveolar bone because this type has high strength value, well maintained shape and is less absorbed. Therefore, the author of this study gained favorable result by grafting the block type autogenous tooth-bone graft material after dental implant implantation on the bone defects of the mandibular molar extraction site. Moreover, the author represents this case with literature review after confirming bone remodeling on the computed tomography image and by histological analysis.

SUTURE TECHNIQUE FOR SUCCESSFUL GUIDED BONE REGENERATION ; PRELIMINARY REPORT OF DOUBLE LAYERED SUTURE TECHNIQUE WITH SUBGINGIVAL SUTURE (성공적인 골유도재생술을 위한 봉합술 : 점막하 봉합법을 이용한 이중 봉합술의 예비 보고)

  • Kim, Young-Bin;Cho, Sung-Dae;Leem, Dae-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.86-91
    • /
    • 2009
  • The success of implants essentially depends on a sufficient volume of healthy bone at the recipient site during implant placement. In patients who have the severe alveolar bone resorption or pneumatized maxillary sinus, it should be performed that bone regeneration procedure before implant placement. Development of barrier membrane makes it possible that predictable result of alveolar bone reconstruction. Many kind of materials used for barrier membrane technique are introduced, non-absorbable or absorbable membranes. But, when operation site was ruptured with membrane exposure, bacterias can be grow up at the bone graft site. Then morphology and migration of fibroblast will be changed. It works as a negative factor on healing process of bone graft site. In oral and maxillofacial department of Chonbuk national university dental hospital, we use variable suture technique like as subgingival suture, vertical mattress suture, simple interrupted suture, if need, tenting suture after GBR or block bone graft. Within these suture technique, wound healing was excellent without complication, so now we take a report of suture technique in reconstruction of alveolar bone surgery.

Assessment of the autogenous bone graft for sinus elevation

  • Peng, Wang;Kim, Il-Kyu;Cho, Hyun-Young;Pae, Sang-Pill;Jung, Bum-Sang;Cho, Hyun-Woo;Seo, Ji-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.6
    • /
    • pp.274-282
    • /
    • 2013
  • Objectives: The posterior maxillary region often provides a limited bone volume for dental implants. Maxillary sinus elevation via inserting a bone graft through a window opened in the lateral sinus wall has become the most common surgical procedure for increasing the alveolar bone height in place of dental implants in the posterior maxillary region. The purpose of this article is to assess the change of bone volume and the clinical effects of dental implant placement in sites with maxillary sinus floor elevation and autogenous bone graft through the lateral window approach. Materials and Methods: In this article, the analysis data were collected from 64 dental implants that were placed in 24 patients with 29 lacks of the bone volume posterior maxillary region from June 2004 to April 2011, at the Department of Oral and Maxillofacial Surgery, Inha University Hospital. Panoramic views were taken before the surgery, after the surgery, 6 months after the surgery, and at the time of the final follow-up. The influence of the factors on the grafted bone material resorption rate was evaluated according to the patient characteristics (age and gender), graft material, implant installation stage, implant size, implant placement region, local infection, surgical complication, and residual alveolar bone height. Results: The bone graft resorption rate of male patients at the final follow-up was significantly higher than the rate of female patients. The single autogenous bone-grafted site was significantly more resorbed than the autogenous bone combined with the Bio-Oss grafted site. The implant installation stage and residual alveolar height showed a significant correlation with the resorption rate of maxillary sinus bone graft material. The success rate and survival rate of the implant were 92.2% and 100%, respectively. Conclusion: Maxillary sinus elevation procedure with autogenous bone graft or autogenous bone in combination with Bio-Oss is a predictable treatment method for implant rehabilitation.

A Prognosis Evaluation after Iliac Bone Graft in Cleft Alveolus Patients (치조열 환자의 장골이식술 후 예후 평가)

  • Hong Jin-Ho;Soh Byung-Soo;Baik Jin-Ah;Shin Hyo-Keun
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 2001
  • Alveolar cleft exists in 75% of cleft patients, In alveolar cleft patients, alar base is widening, palatal fistular formation, maxillary growth disturbance & tooth loss of adjacent area is raised, Alveolar bone grafting, especially iliac bone grafting, is a general treatment method. As operation timing, bone grafting is classified with primary, early secondary, secondary, & late secondary, Here we report cleft width, marginal bone height, bone resorption rate, grafted shape & bone densities after secondary iliac bone grafting was done in the Dept. of oral and maxillofacial surgery of chonbuk national university hospital. We compared cleft width to bone resorption rate and grafted shape. Also, alveolar bone densities of grafted and contralateral site was compared with Emago 3 package? (Oral Diagonostic System, The Netherlands), The data obtained were analyzed using Spearman's rho coefficients and sign test with SPSS for window, The results were obtained as follows. 1. As alveolar cleft width is increase, bone resorption rate is, too. This relation showed significant difference(P<.01). 2, In proximal & distal area, alvolar cleft width and bone graft contour after bone grafting had a reverse proportional difference. It was not significant difference(P>.05). 3. After 3 month, in bone density results by using Emago 3 package? with periapical standard view, occlusal view & panoramic view, differences between grafted bone and alveolar bone of contralateral site didn't show a significant difference(P>.05). Thus, differences of bone densities in the alveolar bones didn't exist.

  • PDF

Prognosis of Alveolar Bone Graft Alveolus in Cleft Patients : the preliminary report (치조열환자에서 치조골 이식술의 예후)

  • Lee, Su-Yeon;Myoung, Hoon;Seo, Byoung-Moo;Hwang, Soon-Jung;Lee, Jong-Ho;Kim, Myung-Jin;Choi, Jin-Young
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2006
  • The case records of 24 patients in Seoul National University Hospital who had bone grafting of 29 alveolar clefts between 2001 and 2004 were examined. Details were recorded of age, sex, preoperative orthodontictreatment, the time of bone grafting, the type of donor site, cleft width, functional load applicationand the success of grafting as established by lowest marginal bone levels. Using this results and review of literature, we concluded that secondary bone graft with iliac bone before canine eruption with root development of 1/2 to 1/3 provide more favorable results and the functional load introduced to the grafted bone lower the resorption rates.

  • PDF

Ridge Augmentation for Implant Placement Using Chin Graft;A Case Report (하악골 전방부 골이식술후 임프란트의 매식;증례보고)

  • Kim, Su-Gwan
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.943-953
    • /
    • 1999
  • Severe alveolar ridge deficiency can prevent ideal implant placement. Ridge augmentation procedures are necessary to regain lost alveolar structures. The corticocancellous block bone graft was harvested from the mandibular symphysis. This block bone was fixed to the lateral aspect of the ridge with titanium screws. Seven months later, the autogenous bone graft was reentered and sufficient bone volume was gained to allow implant placement. The fixation screws were removed and 3I implants were inserted. No complication and postoperative alteration in chin contour were observed. This report demonstrates that chin graft offers a predictable alternative in the reconstruction of ridge deficiency for implant placement.

  • PDF