• Title/Summary/Keyword: Aluminum-foil

Search Result 120, Processing Time 0.028 seconds

Preparation of Aluminum Flake Powder by Recycling of Foil Scrap (알루미늄 호일 스크랩 재활용에 의한 플레이크 분말 제조)

  • 홍성현;김병기
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.50-55
    • /
    • 2000
  • Recycling technology of aluminum foil scraps into aluminum flake powder by ball milling in dry or wet conditions was studied. Aluminum foil were laminated each other, elongated through microforging by the falling balls, fragmented into small foils and then changed into flake powder during ball milling. It is also possible to recycle foil scraps with thickness less than $60\mu\textrm{m}$ into aluminum paste by wet ball milling. As initial foil thickness decreases, foil is easily milled to flake powder by wet milling in mineral spirits. the appearance and the opaque character of glass painted with aluminum paste obtained by wet milling of foils are similar to those of aluminum paste made by ball milling of gas atomized powder.

  • PDF

Anodizing Mechanism of Aluminum Foil Electrolytic Capactor. (전해콘덴사용 알루미늄박의 피막형성 거동에 관한 연구)

  • 김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 1989
  • Pb2+ ino, added in ctching sohing, is electrodeposited on a alumiunm foil for electrolycic condenser to promote its capacitance. In addition, several factoral factors in etching process are varied to examine how they change the capacitance of the condenser. The capacitance of the condenser made of 0.1 ppm pb electrodeposited aluminum foil is enhanced about 20% than of conventional ane. It is thought out that the enhanement is the result of the act of PbO2, which existed for the conveting of electrodeposited Pb, as a promoter tunnel etching of aluminum foil.

  • PDF

Study of Adhesion according to Various Surface Treatments for Lithium Ion Secondary Battery Pouch Film (다양한 표면처리에 따른 리튬이온 이차전지용 파우치 필름을 위한 접착성에 관한 연구)

  • Kim, Do Hyun;Bae, Sung Woo;Cho, Jung Min;Yoo, Min Sook;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-234
    • /
    • 2016
  • Pouch film is manufactured by laminating aluminum foil, polyamide film and polypropylene film with an adhesive or extrusion resin. However, a surface treatment is required for the aluminum because bonding does not occur easily between the aluminum foil and the polymer film. Thus, for this study, surface treatment experiments were performed in order to confirm the effect on adhesion strength. First, a variety of surface treatment solutions were coated on aluminum foil, and contact angle and surface morphology analysis was carried out for the surface-treated aluminum. For lamination of the surface-treated aluminum foil with polyamide film, a polyurethane base adhesive was prepared for the adhesive strength test specimens. The adhesive strength between the aluminum foil and the polyamide film of the resulting specimens was measured (UTM). With such an experiment, it was possible to evaluate the effect on adhesive strength of the various surface treatments.

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo;Kim, Donna H.;Kim, Seung-Cheon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

Delamination Limit of Aluminum Foil-Laminated Sheet During Stretch Forming (등이축인장 모드 변형시 알루미늄 포일 접착강판의 박리한계 예측)

  • Lee, Chan-Joo;Son, Young-Ki;Lee, Jung-Min;Lee, Seon-Bong;Byun, Sang-Deog;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.413-420
    • /
    • 2012
  • An aluminum foil-laminated sheet is a laminated steel sheet on which aluminum foil is adhesively bonded. It is usually used on the outer panel of home appliances to provide an aluminum feeling and appearance on the surface of the product. The delamination of aluminum foil is one of the main problems during the stretch forming process. The purpose of this study is was to determine the delamination limit of an aluminum foil-laminated sheet in the stretch forming process. The delamination was dependent on the bonding strength between aluminum foil and steel sheet. The fracture behavior of the interface between the aluminum foil and the steel sheet was described by a cohesive zone model. A finite element was conducted with the cohesive zone model to analyze the relationship between the delamination limit and the bonding strength of the interface. The interface bonding strength was evaluated by lap shear and T-peel test. The delamination limit of the aluminum foil-laminated sheet was determined by using the bonding strength of the steel sheet. The delamination limit was also verified by the Erichsen test.

Heat Transfer Coefficient, Heat Release and Gas Hazard Tests for Expanded Polystyrene Heat Insulating Materials with Aluminum Foil (알루미늄 호일 부착 발포 폴리스티렌 단열재의 열전도율, 열방출시험 및 가스 유해성 시험)

  • Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.15-19
    • /
    • 2018
  • The purpose of this study is to enhance heat insulation effect and to decrease fire hazard by attaching aluminum foil to expanded polystyrene, which is mainly used for insulating materials, to have fire retardant. The result of the test confirmed that the insulating materials, expanded polystyrene of $10kg/m^3$ and $14kg/m^3$ of density attached aluminum foil on both sides, showed 12%, 14% of improved heat transfer coefficient respectively compared to existing expanded polystyrene of the same density. Besides, they met all the standards for the testing of heat release and gas hazard. On the other hand, the one made of general expanded polystyrene could not meet the standards of the heat release test and the gas hazard test.

The Influence of Electrolytic Condition on Tunnel Etching and Capacitance Gain of High purity Aluminium Foil on capacitor (전해조건이 고순도 알루미늄 박 콘덴서의 터널에칭과 정전용량에 미치는 영향)

  • 이재운;이병우;김용현;이광학;김흥식
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.44-56
    • /
    • 1997
  • Influence of electrochemical etching conditions on capacitance gain of aluminium electrolytic on capacitor foil has been investigated by etching cubic textured high purity aluminum foil in dilute hydrochloric acid. Uniformly distributed etch pit tunnels on aluminum surface have been obtained by pretreatment aluminium foil in 10% NaOH solution for 5 minutes followed by electrochemical etching. Electrostatic capacitance of etched aluminium foil anodized to high voltage increased with the increase of current density, total charge, temperature and concentration of electrolyte up to maximum CV-value and then deceased. Election optical observation of the etched foil revealed that the density of etch of etch pits increased with the increase of current density and concentration of electrolyte. this increase of etch pit density enlarged of the increase of capacitance. However, abnormal high current density and high electrolyte concentration induced the local dissolution of the foil surface which resulted the decrease of foil capacitance.

  • PDF

Study of Peel Strength Property of Aluminum/Organic Composite (알루미늄/유기물 복합재료의 Peel 강도 특성에 대한 연구)

  • Kim, Jun-Young;Yoo, Myong-Jae;Kim, Seoung-Taek;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.217-218
    • /
    • 2007
  • Aluminum 분말과 고분자를 혼합하여 고분자-금속 복합재료(polymer-metal composite)를 만들어 copper foil과 기판의 접착력을 평가하였다. Tape casting 방법을 이용하여 sheet 만들고 vacuum lamination으로 PCB(Printed Circuit Board)기판을 제조한 후 포토공정으로 peel strength pattern을 형성하였으며, 본 연구에서는 최적의 aluminum 조건을 찾기 위하여 압력, 온도, copper foil의 표면 상태와 silane 표면 코팅에 따른 aluminum-polymer복합재료의 peel strength의 변화를 확인하였다. 최적의 조건은 silane 표면 코팅 처리를 한 aluminum 분말로 $210^{\circ}C$에서 $9.7kg/cm^2$ 압력으로 matte면의 돌기 크기가 크며, 응집이 잘 되어있는 copper foil을 사용하여 13.89N의 우수한 peel strength를 구현 할 수 있었다.

  • PDF

Ball Milling of Aluminum Foil Scrap (알루미늄 호일 스크랩의 볼밀링)

  • Hong, Seong-Hyeon;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.29
    • /
    • pp.131-139
    • /
    • 1999
  • The effect of ball milling conditions in the milling of aluminium foil scraps was studied. Initial foil thickness, ball size. content of oleic acid. weight ratio of mineral spirits/foil. charged amount of foil were varied in wet ball milling process. It is impossible to make flake powders by milling of foil scraps with thickness $120 \mum$. As foil thickness decreases from $60\mum$ to $6.5\mum$, Mean size of powder milled for 30 h decreases from 107 µm to 17 µm. Bigger ball is slightly beneficial for milling of foils to the flake powders due to the larger impact energy produced by them. It is impossible to mill the foil without oleic acid to fabricate the flake powder. As content of oleic acid increases from 1.5 % to 5 %, mean size of flake powder milled for 30 h is drastically decreased. For the mineral spirits content below 50 %, foil scrap was not milled because sliding motion of balls by lubricant effect between balls and wall of container. As weight ratio of mineral spirits and foil increase over 100 %, foils were milled powders with mean powder size 15 - 20 때 irrespective of mineral spirits content due to reduced lubricant effect. As charged amount of foil decreases, mean powder size decreases due to increased collision frequency between ball and foil.

  • PDF

Optimization of Ultrasonic Soil Washing Processes Using Aluminum Foil Erosion Tests (알루미늄 호일 부식 실험을 이용한 초음파 토양 세척 공정 개발의 기초 연구)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • The physical effect induced by acoustic cavitation was investigated to accumulate basic data for the design of ultrasonic soil washing processes using aluminum foil erosion tests. A square aluminum foil was placed on the glass beads in the pyrex vessel submerged in the sonoreactor equipped with a 36 kHz ultrasound transducer module at the bottom. Cavitational erosion of foils was quantitatively analyzed for various glass bead diameter conditions (1, 2, and 4 mm), glass bead height conditions (5, 10, 15, and 20 mm), and water height conditions (5, 10, 15, and 20 mm). It was found that aluminum foil erosion significantly increased as the glass bead diameter increased and water height over the glass bead increased due to less attenuation of ultrasound and the optimization of sound field for cavitation. Moreover mechanical mixing was suggested to move constantly particles to the bottom area where the acoustic cavitation occurs most violently. It was because aluminium foil erosion by ultrasound transmitted through glass beads was relatively too weak.