• Title/Summary/Keyword: Aluminum-26

Search Result 295, Processing Time 0.023 seconds

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Experimental Study on the Airside Performance of Aluminum Heat Exchangers Having Slim Louver Fins (슬림형 루버 핀이 장착된 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.587-595
    • /
    • 2017
  • Recent trends in slim air conditioners require heat exchangers of reduced flow depth. In this study, slim louver fin geometry was obtained using predictive correlations. The deduced geometry yielded 10 mm flow depth, 0.9 mm louver pitch, and $35^{\circ}$ louver angle. Samples were made and tests were conducted. The new slim sample yielded 36% higher j factor and 2.3% higher f factor compared with those of the standard sample. This implies that 26% reduction of heat exchanger volume was possible by reducing the flow depth. In addition, the $j/f^{1/3}$ of the slim sample was 55% larger than that of the standard sample. Furthermore, the results are compared with predictions made using existing correlations.

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels (곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구)

  • Roy, Rene;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

Kinetic Study of Synthesis of Aluminum Nitride Using Carbon Reduction and Subsequent Nitridation Method (탄소환원질화법에 의한 AlN 합성의 속도론적 연구)

  • Park, Hyungkyu;Choi, Youngyoon;Nam, Chulwoo
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.39-46
    • /
    • 2017
  • AlN powder was prepared by carbon reduction and subsequent nitridation method through lab- scale experiments. AlN powder was synthesized using the mixture of high purity $Al_2O_3$ powder and carbon black at $1,600{\sim}1,700^{\circ}C$ for 0.5~6 hours under nitrogen atmosphere (flow rate of nitrogen gas: $4.7{\times}10^{-6}{\sim}20{\times}10^{-6}m^3/sec$) with variation of charged height of the mixture powder. Experimental results showed that size of the synthesized particles grows with increasing of temperature. The reaction activation energy was calculated as 382 kJ/mol at the temperature range, and it was considered that chemical reaction is the rate determining step. Content of oxygen and nitrogen of the prpared samples were 0.71~0.96 wt% and 30.7~35.1 wt%. The results was similar with those of the commercial AlN product.

Effects of Sintering Additives on the Thermal and Mechanical Properties of AlN by Pressureless Sintering (상압소결 질화알루미늄의 소결 첨가제 변화에 따른 열적 및 기계적 특성)

  • Hwang, Jin Uk;Mun, So Youn;Nam, Sang Yong;Dow, Hwan Soo
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.395-404
    • /
    • 2019
  • Aluminum nitride (AlN) has excellent electrical insulation property, high thermal conductivity, and a low thermal expansion coefficient; therefore, it is widely used as a heat sink, heat-conductive filler, and heat dissipation substrate. However, it is well known that the AlN-based materials have disadvantages such as low sinterability and poor mechanical properties. In this study, the effects of addition of various amounts (1-6 wt.%) of sintering additives $Y_2O_3$ and $Sm_2O_3$ on the thermal and mechanical properties of AlN samples pressureless sintered at $1850^{\circ}C$ in an $N_2$ atmosphere for a holding time of 2 h are examined. All AlN samples exhibit relative densities of more than 97%. It showed that the higher thermal conductivity as the $Y_2O_3$ content increased than the $Sm_2O_3$ additive, whereas all AlN samples exhibited higher mechanical properties as $Sm_2O_3$ content increased. The formation of secondary phases by reaction of $Y_2O_3$, $Sm_2O_3$ with oxygen from AlN lattice influenced the thermal and mechanical properties of AlN samples due to the reaction of the oxygen contents in AlN lattice.

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Effect of Packaging on the Quality Stability and Shelf-life of Dried Anchovy (마른멸치 저장중의 품질저하에 미치는 포장의 영향)

  • Lee, Kang-Ho;Kim, Chang-Yang;You, Byeong-Jin;Jea, Yoi-Guan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.3
    • /
    • pp.229-234
    • /
    • 1985
  • The effect of packaging on the quality of dried anchovy was investigated, when packed with various materials and stored at different conditions. In cases of nitrogen gas substitution or addition of antioxidant, the reaction rates of lipid oxidation, the loss of available lysine and browning of the samples sealed in aluminum laminated film bag were lower than those packed in kraft paper or polyethylene film bag while the samples without gas substitution did not reveal any great differences in the rate of the reactions. The shelf-lives of the samples computed as a function of lipid oxidation were 90, 98 and 137 days at the storage of $35^{\circ}C$ for the packages of kraft paper, polyethylene and aluminum film respectively. And those at $55^{\circ}C$ storage for the same samples were 47, 51 and 77 days. The half-lives of available lysine loss were 227, 209 and 312 days at $35^{\circ}C$: 83, 83 and 147 days at $55^{\circ}C$ for the samples respectively. And the shelf-lives determined as a function of browning reaction were 26, 27 and 49 days at $55^{\circ}C$. The predicted shelf-lives at $25^{\circ}C$ as a function of lipid oxidation were 130, 140, and 189 days for kraft paper, polyethylene and aluminum laminated film packaging: 207, 229 and 246 days for the browning reaction, and 363, 339 and 415 days for the loss of available lysine. The results suggest that the protective effect of packaging on the reactions of lipid oxidation and browning could not be aided unless the air was expelled or replaced to inert gas.

  • PDF

A Study on the Structural Controlling of Al-Si Alloy by Using Electromagnetic Vibration (전자기 진동을 이용한 Al-Si 합금의 조직 제어에 관한 연구)

  • Choi, Jung-Pyung;Kim, Ki-Bae;Nam, Tae-Woon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.205-210
    • /
    • 2006
  • The structural control of Al-Si alloy, which was not studied among various electromagnetic processing of materials, was considered applying the alternating current and direct current magnetic flux density. The main aim of the present study is to investigate the effects of electromagnetic vibration on the macro and microstructure of Al-Si alloy in order to develop a new process of structural control in Al-Si alloy. When the electromagnetic vibration is conducted for changing the shape of primary aluminum, at low frequency(>60Hz), the shape of dendrite is changed speroidal shape. When the electromagnetic vibration is conducted for changing the shape of eutectic silicon, the fact that a morphological change of the eutectic silicon from coarse platelet flakes to fine fiber shape is observed and the improvement of the mechanical properties is achieved with EMV (Electro Magnetic Vibration) process at high frequency(>500Hz).

Effects of Solid Propellant Cases on the Thermal Response of Nozzle Liner (노즐 내열재 열반응에 미치는 고체 추진제 연소가스의 영향)

  • Hwang, Ki-Young;Yim, Yoo-Jin;Ham, Hee-Cheol;Kang, Yoon-Goo;Bae, Joo-Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.26-36
    • /
    • 2007
  • The thermal response characteristics of nozzle liner for a solid rocket motor applying highly aluminized PCP or HTPB propellant with slotted tube grain have been investigated. The SEM photographs of aluminum oxide particles taken from nozzle liner show that the PCP propellant with the finer and less contents of oxidizer can offer greater possibility for increasing aluminum agglomeration than the HTPB propellant. The PCP propellant shows locally greater mechanical erosion at 4 circumferential areas of the nozzle entrance in line with grain slot due to the impingement of large particles, but the HTPB propellant shows greater thermochemical ablation at the nozzle blast tube, the throat insert and the exit cone because of relatively much more mole fraction of $H_2O\;and\;CO_2$ in combustion gases.

Explosion Hazards of Aluminum Powders with the Variation of Mean Diameter (알루미늄 분진의 평균입경 변화에 따른 폭발위험성)

  • Han, Ou-Sup;Han, In-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2014
  • In this study, the explosion characteristic of aluminium powders have been investigated as a function of particle size using by a 20 L dust explosion apparatus (K$\ddot{u}$hner). The tested aluminium particle sizes were the volume mean diameter of 16, 33 and $88{\mu}m$. The lower explosion limit increases gradually with the increasing of dust particle diameter, respectively 40, 60, $125g/m^3$ in mean diameter of 16, 33 and $88{\mu}m$. Also the increase in particle size for each aluminum dusts was found to cause an decrease in explosion pressure and Kst of dust explosion index, and a increase in the lower explosion concentration. Research results may have important implications for aluminum powders utilization and safety operation.