• Title/Summary/Keyword: Aluminum toxicity

Search Result 60, Processing Time 0.021 seconds

Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil

  • Gomes, Eliane A.;Oliveira, Christiane A.;Lana, Ubiraci G. P.;Noda, Roberto W.;Marriel, Ivanildo E.;de Souza, Francisco A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.978-987
    • /
    • 2015
  • Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.

Assessment of Priority Order Using the Chemical to Cause to Generate Occupational Diseases and Classification by GHS (직업병발생 물질과 GHS분류 자료를 이용한 화학물질 우선순위 평가)

  • Baik, Nam-Sik;Chung, Jin-Do;Park, Chan-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.715-735
    • /
    • 2010
  • This study is designed to assess the priority order of the chemicals to cause to generate occupational diseases in order to understand the fundamental data required for the preparation of health protective measure for the workers dealing with chemicals. The 41 types of 51 ones of chemicals to cause to generate the national occupational diseases were selected as the study objects by understanding their domestic use or not, and their occupational diseases' occurrence or not among 110,608 types of domestic and overseas chemicals. To assess their priority order the sum of scores was acquired by understanding the actually classified condition based on a perfect score of physical riskiness(90points) and health toxicity(92points) as a classification standard by GHS, the priority order on GHS riskiness assessment, GHS toxicity assessment, GHS toxic xriskiness assessment(sum of riskiness plus toxicity) was assessed by multiplying each result by each weight of occupational disease's occurrence. The high ranking 5 items of chemicals for GHS riskiness assessment were turned out to be urethane, copper, chlorine, manganese, and thiomersal by order. Besides as a result of GHS toxicity assessment the top fives were assessed to be aluminum, iron oxide, manganese, copper, and cadium(Metal) by order. On the other hand, GHS toxicity riskiness assessment showed that the top fives were assessed to be copper, urethane, iron oxide, chlorine and phenanthrene by order. As there is no material or many uncertain details for physical riskiness or health toxicity by GHS classification though such materials caused to generate the national occupational diseases, it is very urgent to prepare its countermeasure based on the forementioned in order to protect the workers handling or being exposed to chemicals from health.

Proposals for Revising the Occupational Exposure Limits for Aluminum in Korea (국내 알루미늄 노출실태 및 노출기준 개정 제안)

  • Seung Won Kim;Young Gyu Phee;Yong-Joon Baek;Taejin Chung;Hye-Sil Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.85-97
    • /
    • 2024
  • Objectives: This study was intended to investigate the revision status of the occupational exposure standards for aluminum at home and abroad; to investigate worker exposure at domestic aluminum manufacturing and handling workplaces; to conduct social and economic evaluation for the revision of domestic aluminum exposure limits. Methods: We investigated the current status of occupational exposure limits for aluminum at home and abroad, and analyzed supporting data. An exposure survey was conducted targeting domestic aluminum manufacturing and handling workplaces. Based on these, revised aluminum occupational exposure limits were proposed. Results: The major aluminum exposure limits at home and abroad show a notable difference. The toxicity of aluminum, which was revealed through animal experiments and epidemiological investigations. The average concentration of aluminum in the air at 12 workplaces was 0.016 mg/m3, and the maximum was 0.0776 mg/m3. When total dust and respiratory dust were measured side by side and simultaneously for the same process, 12.1% of the total mass concentration of aluminum dust was respiratory dust. As a result of measuring and comparing the size distribution of dust with an optical particle counter in real time, 48.1% of the total dust in the form of welding fume and pyro-powder was respiratory dust. Based on the literature review and workplace survey, three proposals for changing the aluminum exposure limit were proposed. Proposal (1): For all types, 10 mg/m3 is unified as the exposure limit except for soluble salts and alkyls. Proposal (2): 1(R) mg/m3 as the exposure limit for all forms except soluble salts and alkyl. Proposal (3): 1(R) mg/m3 for pyro-powder and welding fume, and 10 mg/m3 for metal dust, aluminum oxide, and insoluble compounds as exposure standards. A pyro-powder was defined as dry aluminum powder of 200 mesh size (74 ㎛) or smaller (larger size classified as metal dust). Reason for setting: In the workplace survey, the ratio of respiratory dust to total dust was analyzed to be about 1:10, so it was judged that the domestic standard and the ACGIH standard were compatible. Conclusions: In all scenarios according to the revision of the exposure standard, the B/C ratio was greater than 1 or only benefits existed, so it was evaluated as sufficiently reasonable as a result of the socio-economic evaluation.

Assessment of chemical purity of [13N]ammonia injection: Identification of aluminium ion concentration

  • Kim, Ho Young;Park, Jongbum;Lee, Ji Youn;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.80-84
    • /
    • 2018
  • $[^{13}N]$Ammonia or $[^{13}N]NH_3$ is one of the most widely used PET tracer for the measurement of MBF. To produce $[^{13}N]NH_3$, devarda's alloy which contains aluminum, copper and zinc is used for the purpose of reduction from $^{13}N$-nitrate/nitrite to $[^{13}N]NH_3$. Since aluminum has neurotoxicity and renal toxicity, the amount of it should be carefully limited for the administration to the human body. Although USP and EP provide a way to identify the aluminum ion concentration, there are some difficulties to perform. Therefore, we tried to develop the modified method for verifying aluminum concentration of test solution. We compared color between test and standard solutions using chrome azurol S in pH 4.6 acetate buffer. We also tested color change of test and standard solutions according to pH, amounts and the order of reagent and time difference These results demonstrated that the color change of the solution can reflect quantitatively measure aluminum ion concentration. We hope the method is to be used effectively and practically in many sites where $[^{13}N]NH_3$ is produced.

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.

Studies on Hypersensitivity of Recombinant Hepatitis B Vaccine (LBD-008) in Mice and Guinea pigs

  • Park, Jong-Il;Ha, Chang-Su;Han, Sang-Seop
    • Biomolecules & Therapeutics
    • /
    • v.2 no.2
    • /
    • pp.108-113
    • /
    • 1994
  • Toxicity study of recombinant hepatitis B vaccine (LBD-008), a newly developed drug for acute and chronic hepatitis, was investigated in mice and guinea pigs. 1. Mice showed no production of antibodies against LBD-008 inoculated with aluminum hydroxide gel (Alum) as an adjuvant, judged by the heterologous anaphylaxis (PCA) test using rats. On the other hand, antibodies against ovalbumin (OVA) inoculated with alum were definitely detected. 2. In the studies with guinea pigs, both the inoculation of LBD-008 only and of LBD-008 with complete Freund's adjuvant (CFA) as an adjuvant did not produce positive reactions in any of homologous active systemic anaphylaxis (ASA). On the other hand, the inoculation of ovalbumin with complete Freund's adjuvant (CFA) produced positive reaction in both of PCA and ASA. 3. These findings suggested that LBD-008 has no antigenic potential in mice or guinea pigs.

  • PDF

Aluminum Inhibits Vitellogenin Production via Toxic Effects on Hepatocytes in the Rockfish Sebastes schlegelii

  • Hwang, Un-Ki;Kang, Han-Seung;Lee, Yoon;Shon, Jae-Kyoung
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.355-361
    • /
    • 2011
  • Effects of aluminum (Al) on plasma vitellogenin (VTG), alkaline-labile phosphorus (ALPP), calcium (Ca), glutamate pyruvate transaminase (GPT), the hepatosomatic index (HSI), and hepatic Al concentration were examined in estradiol-$17{\beta}$ ($E_2$)-administered immature rockfish Sebastes schlegeli. Fish were injected intraperitoneally with $E_2$ (5 mg/kg body weight [BW]) and/or Al (0, 0.1, 1, 5, and 10 mg/kg BW) and plasma and liver samples were extracted 7 days later. After sodium dodecyl sulfate polyacrylamide gel electrophoresis, the relative amount of VTG was determined by integrated optical density. VTG accounted for 23.6% of the total proteins in the control group, but this value decreased with increasing Al administration. Al reduced the concentrations of ALPP and Ca in a concentration-dependent manner and significant reduction occurred at Al concentrations greater than 5 mg/kg. The concentration of GPT increased in a concentration-dependent manner in all Al-administered rockfish. The concentrations of Al in the liver also increased, and HSI was decreased, in a concentration-dependent manner. These results suggest that Al inhibits $E_2$-induced VTG production by being toxic to hepatocytes in marine fish.

Aluminum Toxicity on Corn Seedlings (옥수수 유묘(幼苗)에 대(對)한 알미늄 독성(毒性))

  • Lee, Yong-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.2
    • /
    • pp.75-78
    • /
    • 1977
  • Corn (Zea may, L.) was grown alternatively in nutrient solution and hydroxy Al or Al-citrate solution to identify the form of Al which induces Al toxicity on Corn seedlings. Corn seedlings exposed to hydroxy Al solution was very toxic but Al-citrate solution did not show any toxic symptoms. At pH 7 with Al-citrate solution, severe Fe, deficiency was induced probably by the decrease of stability constant of Al-and Fe-oganic complexes and subsequent precipitation of Al-and Fe-as a hydroxide form. Addition of humic acid ameliorated the Al toxicity somewhat at pH 4.7 with hydroxy-Al solution but at pH 7 it induced more severe Fe deficiency.

  • PDF

Bacterial and Fungal Communities in Bulk Soil and Rhizospheres of Aluminum-Tolerant and Aluminum-Sensitive Maize (Zea mays L.) Lines Cultivated in Unlimed and Limed Cerrado Soil

  • Mota, Da;Faria, Fabio;Gomes, Eliane Aparecida;Marriel, Ivanildo Evodio;Paiva, Edilson;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.805-814
    • /
    • 2008
  • Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

The Effect of Wollastonite and Manganese Dioxide on Rice Grown on a Flooded Acid Sulfate Soil (특이산성토(特異酸性土)(답(沓))에 생육(生育)한 수도(水稻)에 대(對)한 규회석(珪灰石) 및 MnO2의 효과)

  • Park, Y.D.;Kim, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1970
  • The effect of wollastonite and manganese dioxide on the growth of rice on an acid sulfate soil were investigated in pot experiment. 1. Since aluminum content in the leachate of soil was reduced with increasing the pH and these chemical changes in the leachate were more pronounced by applying wollastonite, aluminum toxicity in flooded paddy rice was overcome by applying wollastonite, or flooding. 2. Poor growth of rice with iron toxicity-like symptoms on the untreated acid sulfate soil may be caused by excess iron and sulfur. Plants applied wollastonite, however, grew normally and did not show any symptoms. Iron and sulfur contents in the plant was reduced by applying wollastonite. 3. Because of the iron content in the both leachate and plant can be lowered by applying wollastonite, iron-toxicity was averted by applying the wollastonite. 4. Application of manganese dioxide in combination with wollastonite did not counteracted iron content in the plant as compared with the wollastonite treatment. 5. The application of wollastonite increased the dry weight of straw and grain yield. Manganese dioxide with wollastonite caused the increase of number of spickelets per panicles and ripened grains as compared with wollastonite. 6. From these results it can be concluded that the major cause of the poor growth of rice on acid sulfate soil is iron toxicity and the Fe-toxicity can be reduced by application of wollastonite.

  • PDF