Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08002

Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil  

Gomes, Eliane A. (Embrapa Maize and Sorghum)
Oliveira, Christiane A. (Embrapa Maize and Sorghum)
Lana, Ubiraci G. P. (Embrapa Maize and Sorghum)
Noda, Roberto W. (Embrapa Maize and Sorghum)
Marriel, Ivanildo E. (Embrapa Maize and Sorghum)
de Souza, Francisco A. (Embrapa Maize and Sorghum)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 978-987 More about this Journal
Abstract
Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.
Keywords
Aluminum saturation; arbuscular mycorrhizal fungi (AMF); Zea mays L.; molecular diversity; 18S rDNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349: 121-156.   DOI
2 Rufyikiri G, Dufey JE, Nootens D, Delvaux B. 2000. Effect of aluminium on bananas (Musa spp.) cultivated in acid solutions. I. Plant growth and chemical composition. Fruits 55: 367-379.
3 Saghai-Maroof MA, Soliman KA, Jorgensen RA, Allard RW. 1984. Ribossomal DNA spacer length polymorphism in barley: mendelian inheritance, chromosomal location, and populations dynamics. Proc. Natl. Acad. Sci. USA 81: 8014-8018.   DOI
4 Santos-González JC, Finlay RD, Tehler A. 2007. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl. Environ. Microbiol. 73: 5613-5623.   DOI
5 Lin X, Feng Y, Zhang H, Chen R, Wang J, Zhang J, Chu H. 2012. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ. Sci. Technol. 46: 5764-5771.   DOI
6 Marschner P, Solaiman Z, Rengel Z. 2006. Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283: 11-24.   DOI
7 Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42: 724-738.   DOI
8 Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2: 191-199.   DOI
9 Oliveira CA, Sá NMH, Gomes EA, Marriel IE, Scotti MR, Guimarães CT, et al. 2009. Assessment of the mycorrhizal community in the rhizosphere of maize (Zea mays L) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE). Appl. Soil Ecol. 41: 249-258.   DOI
10 Parentoni SN, de Souza Jr CL, Alves VMC, Gama EEG, Coelho AM, Oliveira AC, et al. 2010. Inheritance and breeding strategies for phosphorus efficiency in tropical maize (Zea mays L). Maydica 55: 1-15.
11 Porter WM, Robson AD, Abbott LK. 1987. Factors controlling the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J. Appl. Ecol. 24: 663-672.   DOI
12 Postma JWM, Olsson PA, Falkengren-Grerup U. 2007. Root colonisation by arbuscular mycorrhizal fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biol. Biochem. 39: 400-408.   DOI
13 Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk M, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 30. Syst. Biol. 59: 307-321.   DOI
14 Guo YJ, Ni Y, Raman H, Wilson BAL, Ash GJ, Wang AS, Li GD. 2012. Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant Soil 351: 389-403.   DOI
15 Helgason T, Daniell TJ, Husband R, Fitter AH, Young JP. 1998. Ploughing up the wood-wide web? Nature 394: 431.   DOI
16 Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D. 2006. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol. Ecol. 15: 2277-2289.   DOI
17 Kochian L, Hoekenga O, Piñeros M. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55: 459-493.   DOI
18 Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173-195.   DOI
19 Klugh KR, Cumming JR. 2007. Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol. 27: 1103-1112.   DOI
20 Klugh-Stewart K, Cumming J. 2009. Organic acid exudation by mycorrhizal Andropogon virginicus L (broomsedge) roots in response to aluminum. Soil Biol. Biochem. 41: 367-373.   DOI
21 Ladygina N, Hedlund K. 2010. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol. Biochem. 42: 162-168.   DOI
22 Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, et al. 2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol. 190: 794-804.   DOI
23 Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4: 337-345.   DOI
24 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32: 1792-1797.   DOI
25 Ewing B, Hillier L, W endl MC, Ewing B , Hillier L, Wendl MC, Green P. 1998. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175-185.   DOI
26 Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27: 221-224.   DOI
27 Fageria NK, Baligar VC, Zobel RW. 2007. Yield, nutrient uptake and soil chemical properties as influenced by liming and boron application in common bean in a no-tillage system. Commun. Soil Sci. Plant Anal. 38: 1637-1653.   DOI
28 Gianinazzi-Pearson V, Branzanti B, Gianinazzi S. 1989. ln vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243-255.
29 Göransson P, Olsson PA, Postma J, Falkengren-Grerup U. 2008. Colonisation by arbuscular mycorrhizal and fine endophytic fungi in four woodland grasses - variation in relation to pH and aluminium. Soil Biol. Biochem. 40: 2260-2265.   DOI
30 Alguacil MM, Torrecillas E, Roldán A, Díaz G, Torres MP. 2012. Perennial plant species from semiarid gypsum soils support higher AMF diversity in roots than the annual Bromus rubens. Soil Biol. Biochem. 49: 132-138   DOI
31 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI
32 Augé RM. 2001. Water relations, drought and vesiculararbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.   DOI
33 Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M. 2010. Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol. Biochem. 42: 758-765.   DOI
34 da Mota FF, Gomes EA, Marriel IE, Paiva E, Seldin L. 2008. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. J. Microbiol. Biotechnol. 18: 805-814.
35 Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V. 2012. Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fertil. Soils 48: 911-922.   DOI
36 Clark RB. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192: 15-22.   DOI
37 Clark RB, Zeto SK. 1996. Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biol. Biochem. 28: 1505-1511.   DOI
38 Sylvia DE, Hammond LC, Bennet JM, Hass JH, Linda SB. 1993. Field response of maize to a VAM fungus and water management. Agron. J. 85: 193-198.   DOI
39 Siqueira JO, Safir GR, Nair MG. 1991. VA-mycorrhizae and mycorrhiza stimulating isoflavonoid compounds reduce plant herbicide injury. Plant Soil 134: 233-242.   DOI
40 Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis, 3rd Ed. Academic Press, Cambridge.
41 von Uexkull H, Mutert E. 1995. Global extent development and economic impact of acid soils. Plant Soil 171: 1-15.   DOI
42 Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-577.   DOI
43 Toljander JF, Santos-González JC, Tehler A, Finlay RD. 2008. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol. Ecol. 65: 323-338.   DOI
44 van Aarle IM, Söderström B, Olsson PA. 2003. Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biol. Biochem. 35: 1557-1564.   DOI
45 Yano K, Takaki M. 2005. Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol. Biochem. 37: 1569-1572.   DOI
46 Sasvári Z, Hornok L, Posta K. 2011. The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture. Biol. Fertil. Soils 47: 167-176.   DOI
47 Schalamuk S, Cabello M. 2010. Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102: 261-268.   DOI
48 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing Mothur: open-source platform-independent community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
49 Schüßler A, Walker C. 2010. The Glomeromycota. A species list with new families and new genera. Available at http://wwwlrzde/wschuessler/amphylo/amphylospecieshtml.
50 Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F. 2013. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23: 167-183.   DOI
51 Simon L, Lalonde M, Bruns TD. 1992. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58: 291-295.
52 Siqueira JO, Hubbell DH, Mahmud AW. 1984. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant Soil 76: 115-124.   DOI
53 Siqueira JO, Lambais MR, Sturmer SL. 2002. Fungos micorrízicos arbusculares: características associação simbiótica e aplicação na agricultura. Biotecnolog. Ciênc. Desenvolv. 25: 12-21.
54 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41: 590-596.   DOI
55 Redecker D. 2000. Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10: 73-80.   DOI
56 Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23: 515-531.   DOI
57 Renker C, Weißhuhn K, Kellner H, Buscot F. 2006. Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza 16: 525-531.   DOI