• Title/Summary/Keyword: Aluminum sheet

Search Result 384, Processing Time 0.021 seconds

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.

Silica Aerogel Blanket Processing Technologies for Use as a Widespread Thermal Insulation Material (범용 단열재로 활용하기 위한 실리카 에어로젤 블랭킷의 처리 기술)

  • Jae-Wook Choi;Young Su Cho;Dong Jin Suh
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.237-243
    • /
    • 2023
  • Aerogel is the most excellent insulation material known to date, but it is inflexible and has very low strength. A blanket containing aerogel in a nonwoven fabric or fiber is currently the most practical form. However, aerogel blankets are not yet widely used because they cannot avoid dust generation when handled, lack flexibility, and can possibly deform. In this study, vacuum treatment, surface treatment, and composite materialization technology were applied to solve this problem, and some prototypes were also made. If an aerogel blanket is wrapped in an aluminum sheet, sealed at the four ends, and vacuumed, it can become a material with better insulation than the blanket itself. An aerogel molded body can be made by coating the aerogel blanket with resin and treating the surface. If the aerogel blanket is multi-packed and laminated with resin or fiber in multiple layers to make it a composite material, it can be used as a flexible insulation material. In particular, this composite material, which utilizes a Teflon membrane with controlled pores, is breathable and waterproof, so it can be used for clothing. Prototypes of insoles for winter boots and outdoor roll mats were also produced using aerogel blanket resin and fiber composites. These prototypes showed low thermal conductivity of less than 20 mW m-1K-1, with good flexibility and durability.

Structural and Physical Properties of Reflective Sheets Prepared by Using Glass Beads (유리구슬을 사용하여 제조된 재귀반사시트의 구조 및 재귀반사 특성 연구)

  • Lim, Du-Hyun;Lee, Min-Ho;Heo, Min-Yeong;Ahn, Jou-Hyeon;Park, Jin-Woo;Yu, Ji-Hyun;Kim, Jong-Seon;Ryu, Ho-Suk;Ahn, Hyo-Jun;Kim, Ik-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, engineering grade and high intensity reflective sheets were prepared with glass beads and their reflection performance and physical properties were investigated. The reflective sheets prepared by using glass beads are divided into enclosed or encapsulated lens type, depending on whether the glass beads are open in air or not. Because of an extra layer on the glass bead surface, the enclosed lens type reflective sheets show very little change in the properties by bad weather conditions, compared to encapsulated lens type reflective sheets. Optimization of the amount of glass beads on the surface was carried out, which determines the retroreflective properties. Enclosed and encapsulated lens type reflective sheets with various colors were prepared and their coefficients of retroreflection were determined. The encapsulated type reflective sheet with white color shows a coefficient of retroreflection of $210.4cd/1x{\cdot}m^2$, which is higher than the enclosed type ($74cd/1x{\cdot}m^2$). Effect of washing on the reflective property and adhesive power of the reflective sheets was investigated, and it is found that the number of glass beads decreased with washing and the aluminum layer deposited was damaged extensively in the encapsulated lens type reflective sheets.