DOI QR코드

DOI QR Code

Silica Aerogel Blanket Processing Technologies for Use as a Widespread Thermal Insulation Material

범용 단열재로 활용하기 위한 실리카 에어로젤 블랭킷의 처리 기술

  • Jae-Wook Choi (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Young Su Cho (Gwangjang Innotech) ;
  • Dong Jin Suh (Clean Energy Research Center, Korea Institute of Science and Technology)
  • 최재욱 (한국과학기술연구원 청정에너지연구센터) ;
  • 조영수 (광장이노텍) ;
  • 서동진 (한국과학기술연구원 청정에너지연구센터)
  • Received : 2023.08.29
  • Accepted : 2023.10.12
  • Published : 2023.12.31

Abstract

Aerogel is the most excellent insulation material known to date, but it is inflexible and has very low strength. A blanket containing aerogel in a nonwoven fabric or fiber is currently the most practical form. However, aerogel blankets are not yet widely used because they cannot avoid dust generation when handled, lack flexibility, and can possibly deform. In this study, vacuum treatment, surface treatment, and composite materialization technology were applied to solve this problem, and some prototypes were also made. If an aerogel blanket is wrapped in an aluminum sheet, sealed at the four ends, and vacuumed, it can become a material with better insulation than the blanket itself. An aerogel molded body can be made by coating the aerogel blanket with resin and treating the surface. If the aerogel blanket is multi-packed and laminated with resin or fiber in multiple layers to make it a composite material, it can be used as a flexible insulation material. In particular, this composite material, which utilizes a Teflon membrane with controlled pores, is breathable and waterproof, so it can be used for clothing. Prototypes of insoles for winter boots and outdoor roll mats were also produced using aerogel blanket resin and fiber composites. These prototypes showed low thermal conductivity of less than 20 mW m-1K-1, with good flexibility and durability.

에어로젤은 지금까지 알려진 가장 단열성이 우수한 소재이지만 유연성이 없고 강도가 매우 낮아 부직포나 섬유에 에어로젤을 담지한 블랭킷이 현실적으로 가장 활용이 가능한 형태이다. 그러나 에어로젤 블랭킷도 분말 발생을 피할 수 없고 유연성이 부족하고 변형 가능성이 있는 문제가 있으므로 아직은 범용으로 사용되지는 못하고 있다. 본 연구에서는 이를 해결하기 위하여 진공 처리, 표면 처리, 복합 소재화 기술을 적용하였고 일부 시제품도 제작하였다. 에어로젤 블랭킷을 알루미늄 시트로 감싼 다음 네 끝을 봉하고 진공을 뽑으면 단열성이 블랭킷 자체보다도 우수한 소재가 될 수 있다. 에어로젤 블랭킷을 수지로 도포하여 표면 처리하면 에어로젤 성형체를 만들 수 있다. 에어로젤 블랭킷에 여러 겹으로 수지나 섬유로 라미네이팅하여 복합체로 만들면 유연성을 지닌 단열소재로 활용할 수 있다. 특히 기공이 조절된 테플론 멤브레인을 활용한 복합체는 투습 및 방수 기능까지 보유하여 의복에 사용할 수 있다. 수지와 섬유의 에어로젤 블랭킷 복합체를 활용하여 방한화용 깔창과 야외용 깔개 시제품도 제작하였다. 에어로젤을 활용하여 제작한 깔창 및 야외 깔개의 열전도는 20 mW m-1 K-1 이하로 단열성이 뛰어났으며, 유연성과 내구성도 우수하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 방위사업청 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비(과제번호: 22-SN-CO-07) 지원으로 수행되었습니다.

References

  1. Kistler, S. S., "Coherent Expanded Aerogels and Jellies," Nature, 127, 741 (1931).
  2. Kistler, S. S., "Coherent Expanded-aerogels," J. Phys. Chem., 36, 52-64 (1932). https://doi.org/10.1021/j150331a003
  3. Sonu, S. S., Nisha, R., and Indu, C., "Multifunctional Aerogels: A Comprehensive Review on Types, Synthesis and Applications of Aerogels," J. Sol-Gel Sci. Technol., 105, 324-336 (2023).
  4. Fricke, J., "Aerogels and Their Applications," J. Non-Cryst. Solids, 147-148, 356-362 (1992). https://doi.org/10.1016/S0022-3093(05)80644-1
  5. Hrubesh, L., "Aerogel Applications," J. Non-Cryst. Solids, 225, 335-342 (1998). https://doi.org/10.1016/S0022-3093(98)00135-5
  6. Ji, C., Zhu, S., Zhang, E., Li, W., Liu, Y., Zhang, W., Su, C., Gu, Z., and Zhang, H., "Research Progress and Applications of Silica-Based Aerogels - A Bibliometric Analysis," RSC Adv., 12, 14137-14153 (2022).
  7. Park, J.-M., Kim, D.-H., and Suh, D. J., "Resent Research Trends for Green Building Thermal Insulation Materials," Clean Technol., 18(1), 14-21 (2012). https://doi.org/10.7464/ksct.2012.18.1.014
  8. Suh, D. J., "Status and Perspectives of Ultra-Lightweight Silica Aerogel Superinsulation Materials," Clean Technol., 28(4), 301-308 (2022).
  9. https://www.cabotcorp.com/solutions/products-plus/aerogel/particles (accessed Aug. 2023).
  10. https://jiosaerogel.com/aerogel-technology/ (accessed Aug. 2023).
  11. https://www.aerogel.com/# (accessed Aug. 2023).
  12. Suh, D. J., Yang, G. S., Yoon, Y. H., Park, T.-J., Suh, Y.-W., Choi, J.-W., Kim, H. J., Yoon, K. E., and Kim, D. S., "Method for Preparation Vacuum Insulation Panel Using Monolithic Porous Material and Vacuum Packing Material, and Vacuum Insulation Panel," Korea Patent No. 1,071,677 (2011).
  13. Suh, D. J., Yang, G. S., Yoon, Y. H., Choi, J.-W., Ha, J.-M., Jae, J. H., Cho, Y. S., Jung, M. H, Jo, Y. S., Kim, S. S, Lee, K. U., Park, H. Y., and Lee, T. S., "Method of Manufacturing Aerogel Insulation Materials with Excellent Long-term Durability and the Same," Korea Patent No. 1,966,406 (2019).
  14. Suh, D. J., Yang, G. S., Yoon, Y. H., Choi, J.-W., Ha, J.-M., Jae, J. H., Cho, Y. S., Cho, Y. S., Jung, M. H., Jo, Y. S., Kim, S. S., Lee, K. U., Park, H. Y., and Lee, T. S., "Polyimide Surface Treated Aerogel Insulation Materials and Method of Manufacturing the Same," Korea Patent No. 1,912,455 (2018).
  15. Jelle, B. P., "Traditional, State-of-the-art and Future Thermal Building Insulation Materials and Solutions - Properties, Requirements and Possibilities," Energy Build., 43, 2549-2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
  16. Galatioto, A., Ricciu, R., Salem, T., and Kinab, E., "Energy and Economic Analysis on Retrofit Actions for Italian Public Historic Buildings," Energy, 176, 58-66 (2019).
  17. Gasmen, E., Marchetta, J., and Sabri, F., "Simulation and Optimization of Aerogel Packaging Solutions for Cold-Chain Biologistics," J. Package. Technol. Res., 7(2), 1-11 (2023). https://doi.org/10.1007/s41783-022-00149-0
  18. Sambucci, M., Savoni, F., and Valente, M., "Aerogel Technology for Thermal Insulation of Cryogenic Tanks-Numerical Analysis for Comparison with Traditional Insulating Materials," Gels, 9, 307-323 (2023).
  19. Mekonnen, B. T., Ding, W., Liu, H., Guo, S., Pang, X., Ding, Z., and Seid, M. H., "Preparation of Aerogel and its Application Progress in Coatings: a Mini Overview," J. Leather Sci. Eng., 3, Article 25 (2021).
  20. Rostami, J., Khandel, O., Sedighardekani, R., Sahneh, A. R., and Ghahari, S., "Enhanced Workability, Durability, and Thermal Properties of Cement-Based Composites with Aerogel and Paraffin Coated Recycled Aggregates," J. Clean Prod., 297, Article 126518 (2021).
  21. Lin, L., Li, Z., Mao, H., Li, W., and Wang, C., "Optically Active Polyurethane/Silica Aerogel Coated Cotton Fabrics for Thermal Protection," Front Mater., 8, Article 681678 (2021).
  22. Krzeminska, S., Cieslak, M., Kaminska, I., and Nejman, A., "Application of Silica Aerogel in Composites Protecting Against Thermal Radiation," Autex Res. J., 20(3), 274-287 (2020). https://doi.org/10.2478/aut-2020-0008
  23. Xu, L. H., Wang, L. M., Pan, H., Shen, Y., Ding, Y., Zhang, X. Y., and Sheng, Y., "Preparation of Superhydrophobic Porous SiO2 Aerogel Using Methyl Trimethoxy Silane Single Precursor and Superhydrophobic Cotton Fabric Coating from It," J. Nanosci Nanotechnol., 19, 7799-7809 (2019).
  24. Linhares, T., de Amorim, M. T. P., and Duraes, L., "Silica Aerogel Composites with Embedded Fibres: A Review on their Preparation, Properties and Applications," J. Mater. Chem. A, 7, 22768-22802 (2019).
  25. Prevolnik, V., Zrim, P. K., and Rijavec, T., "Textile Technological Properties of Laminated Silica Aerogel Blanket," Contemp. Mater., V-1, 117-123 (2014). https://doi.org/10.7251/COMEN1401117P
  26. https://www.quechua.com/ (accessed Aug. 2023).
  27. https://en.wikipedia.org/wiki/Breathability (accessed Aug. 2023).
  28. Kim, S.-C., Lee, K.-H., Hwang, S.-Y., Jang, H. S., and Lee, J.-H., "Comparative Studies of Thermal Insulation Performance of Life Vests by Numerical Analysis and Experiment," J. Navig. Port Res., 40(1), 7-14 (2016).
  29. ANSI/ASHRAE Standard 55-2017 (2017).
  30. https://www.nasa.gov/offices/oct/home/tech_life_aerogel.html (accessed Aug. 2023).
  31. https://primaloft.com/news/primaloft-expands-use-of-its-high-performance-primaloft-cross-core-technology-with-increased-emphasis-on-sustainability/ (accessed Aug. 2023).
  32. https://www.prnewswire.com/news-releases/ortholite-creates-worlds-first-and-only-aerogel-infused-open-cell-pu-foam-301235738.html (accessed Aug. 2023).
  33. Du, Y. and Kim, H.-E., "Research Trends of the Application of Aerogel Materials in Clothing," Fash. Text., 9, Article 23 (2022).