• Title/Summary/Keyword: Aluminum powders

Search Result 189, Processing Time 0.022 seconds

Stabilization and Thermal Properties of Carbon Nanotubes/Cu Nanocomposites Prepared by Molecular-Level Mixing

  • Hong, Youn-Jeong;Jung, Chung-Hun;Kim, Hye-Jin;Lee, Kyu-Mann
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1378-1381
    • /
    • 2006
  • The CNTs are the most extensively studied material which are characterized by the complete property of matter, structure, and the large thermal conductivity (Thermal conductivity of $CNTs\;{\sim}>2000W/mK$ vs. Thermal conductivity of Aluminum ${\sim}\;>204W/mK$). Thus, they are successfully applied to the various fields. However, due to the strong agglomeration caused by the van der waal's force, their applications are limited. In the present study, a new method for CNTs dispersion was developed by using the mechanical dispersion, acid treatment, and then Cu was coated. This process produces CNTs/Cu nanocomposite powders, whereby the CNTs are homogeneously located within the Cu powders. The thermal properties of the CNTs/Cu nanocomposite were investigated.

  • PDF

Acoustic Emission Characteristics of Plasma Sprayed Ceramic Coating Layer after Salt Spray (플라즈마용사 세라믹코팅 피막부식재의 음향방출 특성)

  • 김귀식;박경석;홍용의
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.344-349
    • /
    • 2001
  • This paper was to investigate of a adhesiveness for the plasma sprayed coating materials did salt spray by acoustic emission method in tensile loadings. The powders used for the coating were nickel aluminum composite powder Ni-4,5wt.%Al and titanium dioxide powder Ti02. These powders were coated on a carbon steel S45C by plasma spray method. The salt solution was a 5% NaCl and the salt spray times were 2, 5 and 10 hours respectively. The salt solution penetrated into the surface of the substrate through pore of the coating layer built in the process of plasma spay. Corrosion productions formed on the surface of substrate. The adhesiveness between the substrate and the coating layer is weaken by corrosion and the exfoliation initiated chiefly at the corrosion surface of the substrate. The AE events and energy of the corroded coating specimens decreased as the salt spray times increased.

  • PDF

Effect of LiF and BaF2 Addition on Synthesis of AlN Powder (AlN 분말합성에 있어서 LiF와 BaF$_2$ 첨가효과)

  • 최병현;이창송;신태수;이종민
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.647-653
    • /
    • 1991
  • In order to synthesize fine AlN powder by the direct nitridation of Aluminum metal power added LiF and BaF2 as additives was heated at 150$0^{\circ}C$ for 3 hrs. in nitrogen gas with flow rate of 20 mι/sec. Additives are promoted the nitridation by prevented the aggromerate of powders when 3% LiF and 2% BaF2 were added to Al metal powder. Rate of nitridation was about 100% and average size of AlN powders were very fine such as 0.3 ${\mu}{\textrm}{m}$. Specific surface area of synthesized AlN powder was 3.95$m^2$/g and also O2 and N2 contents were 2.595% and 33.25%, respectively.

  • PDF

Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment (침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.193-200
    • /
    • 1988
  • The starting materials were aluminum hydroxide prepared by precipitation method at the conditions of pH values; 7, 9, 10 and 11. The properties of alumina powder on heat-treatment were studied. After dehydrating structural water from amorphous aluminum hydroxide, the first formed phase was amorphous alumina and its specific surface are was decreased. The specific surface area was increased by dehydration of structural water from aluminum hydroxides except amorphous aluminum hydroxide. The specific surface area was increased with increase of the ratio of A1OOH to $A1(OH)_3$ in the region of transition aluminas. The rate of transition from aluminum hydroxide to alpha alumina occurred in the order of 7, 10, 9 and 11 of pH values. The morphology of alpha alumina powders was skeleton particles remaining outer shape of aluminum hydroxide. Both the elevation of heat-treatment temperature and the transition toalpha alumina decreased specific surface area and brought about the growth of particles.

  • PDF

Characteristics in Microstructure of Particle Reinforced Al Matrix Composites Fabricated by Spray-Cast Forming Process (분사주조한 입자강화 알루미늄 복합재료의 미세조직 특성)

  • Park, Chong-Sung;Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.530-540
    • /
    • 1994
  • Aluminium-silicon alloy(JIS AC8A) matrix composites reinforced with SiC particles were fabricated by spray-cast forming process, and the microstructure of powders and preforms produced were studied by using an optical and scanning electron microscopy. SiC particles were co-sprayed by mixed phase injection method during the spray casting process. Most of the composite powders formed by this mixed phase injection method exhibit morphology of particle-embedded type, and some exhibits the morphology of particle attached type due to additional attachment of the SiC particles on the surface of the powders in flight. The preforms deposited were resulted in dispersed type microstructure. The pre-solidified droplets and the deposited preform of SiC-reinforced aluminium alloy exhibit finer equiaxed grain size than that of unreinforced aluminium alloy. Eutectic silicons of granular type are crystallized at the corner of the aluminum grains in the preforms deposited, and some SiC particles seem to act as nucleation sites for primary/eutectic silicon during solidification. Such primary/eutectic silicons seem to retard grain growth during the continued spray casting process. It is envisaged from the microstructural observations for the deposited preform that the resultant distribution of SiC injected particles in the Al-Si microsturcture is affected by the amount of liquid phase in the top part of the preform and by the solidification rate of the preform deposited.

  • PDF

Planar Shock Wave Compaction of Oxidized Copper Nano Powders using High Speed Collision and Its Mechanical Properties (고속 충돌 시 발생하는 평면 충격파를 이용한 산화 나노 분말의 치밀화 및 기계적 특성 평가)

  • Ahn, Dong-Hyun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • Bulk nanostructured copper was fabricated by a shock compaction method using the planar shock wave generated by a single gas gun system. Nano sized powders, average diameter of 100 nm, were compacted into the capsule and target die, which were designed to eliminate the effect of undesired shock wave, and then impacted with an aluminum alloy target at 400 m/s. Microstructure and mechanical properties of the shock compact specimen were analyzed using an optical microscope (OM), scanning electron microscope (SEM), and micro indentation. Hardness results showed low values (approximately 45~80 Hv) similar or slightly higher than those of conventional coarse grained commercial purity copper. This result indicates the poor quality of bonding between particles. Images from OM and SEM also confirmed that no strong bonding was achieved between them due to the insufficient energy and surface oxygen layer of the powders.

Phase Formation Behavior of Mechanical Alloyed Al-25at% Nb Powder Mixtures (기계적 합금화에 의한 Al-25at%Nb 혼합분말의 상형성 거동)

  • 이상호;김동관;이진형
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.997-1004
    • /
    • 1995
  • Intermetallic compound NbAl₃and amorphous phases were synthesized by mechanical alloying of elemental powder mixtures of niobium and aluminum. The composition of the powder mixtures was Nb-45wt%Al(75at%Al). The mechanical alloying was performed with a high energy SPEX 8000 mixer/mill up to 72 hrs. The resulting powders were analyzed by XRD, DTA, SEM and TEM. The mechanically alloyed powders exhibited lamellar structures in the early stage. And the elements of Nb and Al were homogeneously distributed over the Powder when a steady state was reached. An intermetallic compound, NbAl₃, was formed by mechanical alloying for 4 hrs. The mechanically alloyed powders exhibited a large exotherm around 600℃, corresponding to formation of stable NbAl₃and stress relief.

  • PDF

Synthesis of Cubic Boron Nitride by Al-Mg Solvents

  • Park, Jong-Ku;Park, S.T.;S.K. Singhal;S. J. Cui;K. Y. Eun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.187-190
    • /
    • 1997
  • The aluminum-magnesium (Al-Mg) aklloys have been proved to be an effective solvent for synthesis of cubic-phase boron nitride (cBN) from hexagonal-phase boron nitride (hBN) at the conditions of high pressures and high temperatures (HP/HT). Various kinds of hBN powders having different crystallinity have been tested for cBN synthesis with Al-Mg solvents. The conversion ratio from hBN to cBN and the shape of synthesized cBN crystals appeared to be affected strongly by chemical composition and added amount of Al-Mg solvents as well as crystallinity of BN powders. As the magnesium content increased in the Al-Mg solvents, the conversion ratio increased and the size of cBN crystals became larger. The crystal facets developed well in the specimens with solvents having high Mg content. It was observed that a hBNlongrightarrowcBN transformation occurred more easily in the specimens having well crystallized hBN powders. Amorphous BN having much $B_2O_3$ impurity exhibited a low threshold temperature for transformation to cBN, which was attributed to crystallization of amorphous BN to well crystallized hBN prior to transformation into cBN with help of $B_2O_3$.

  • PDF

A Characteristics of Thick and Hard Al-Cu Alloy by Overlaying Welding Process (오버레이 용접법에 의한 Al-Cu 합금 경화후막의 특성)

  • 박정식;양변모;박경재
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.53-61
    • /
    • 1996
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thicker surface hardening alloy layers. The thicker surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG and TIG welding process with Cu powders feeding. The characteristics of hardening and wear resistance have been investigated in relation to the microstructures of alloyed layers, with a selection of optimum alloying conditions for formation of overlaying layer. The results obtained were summarized as follows With increasing feeding rate of Cu powders by MIG welding, the hardness and specific wear of the overlay weld alloys were increased. It is considered that these high hardness and specific wear of overlay weld alloys were due to the formation of Θ($Al_2Cu$) phases. With increasing feeding rate of Cu powders by TIG welding, the hardness and specific wear of the overlay weld alloys were increased in feeding rates 12 and 18g/min. However, the hardness and specific wear were decreased in the powder feeding rate 38g/min. It is considered that considered that decrease of hardness and specific wear in the powder feeding rate 38g/min due to formation of ${\gamma}$($Al_4Cu_9$) phases.

  • PDF

Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I) (AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF