• Title/Summary/Keyword: Aluminum powder

Search Result 460, Processing Time 0.025 seconds

Properties of Alumina Powder Prepared by Precipitation Method(II) : Properties of Alumina Powder on Heat-Treatment (침전법으로 제조한 Alumina 분말의 특성(II) : 열처리에 따른 Alumina 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.193-200
    • /
    • 1988
  • The starting materials were aluminum hydroxide prepared by precipitation method at the conditions of pH values; 7, 9, 10 and 11. The properties of alumina powder on heat-treatment were studied. After dehydrating structural water from amorphous aluminum hydroxide, the first formed phase was amorphous alumina and its specific surface are was decreased. The specific surface area was increased by dehydration of structural water from aluminum hydroxides except amorphous aluminum hydroxide. The specific surface area was increased with increase of the ratio of A1OOH to $A1(OH)_3$ in the region of transition aluminas. The rate of transition from aluminum hydroxide to alpha alumina occurred in the order of 7, 10, 9 and 11 of pH values. The morphology of alpha alumina powders was skeleton particles remaining outer shape of aluminum hydroxide. Both the elevation of heat-treatment temperature and the transition toalpha alumina decreased specific surface area and brought about the growth of particles.

  • PDF

A study on analysis of particle size distribution

  • Min, Shin-Hong
    • Archives of Pharmacal Research
    • /
    • v.3 no.2
    • /
    • pp.65-74
    • /
    • 1980
  • Analysis of particle size distribution of a sample of fine aluminum hydroxide powder was carried out by four different methods, i. e., conductivity, air permeability, gas-adsorption and sedimentation. Each method was reproducible. The results obtained by Coulter counter and sedimentation balance were similar, and the data obtained by Lea and Nurse permeameter and Stroehlein areameter were also similar. But the results differ considerabley between the former and the latter. The advantages and disavantages of each method were discussed briefly and a means of comparing the results with those obtianed by surface area measurements was shown.

  • PDF

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.

Densification Behavior of Aluminum Alloy Powder Mixed with Zirconia Powder Inclusion Under Cold Compaction (냉간압축 하에서 지르코니아 분말이 혼합된 알루미늄합금 분말의 치밀화 거동)

  • Ryu, Hyun-Seok;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1324-1331
    • /
    • 2002
  • Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The Cap model with constraint factors was implemented into a finite element program (ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the Cap model with constraint factors were good.

Assessment of the Corrosion Behavior of a Sintered Al-Cu-Mg Alloy in Aeronautical Environments as a Function of the Heat Treatment

  • Sanchez-Majado, S.;Torralba, J. M.;Jimenez-Morales, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.549-550
    • /
    • 2006
  • The corrosion performance of a powder metallurgical aluminum alloy in aeronautical environments was studied for both as sintered and heat treated states. Sintered samples were obtained by uniaxial pressing of an Al-Cu-Mg prealloyed powder followed by liquid phase sintering. The heat treatments applied were T4 and T6. Corrosion behaviour was assessed by means of potentiodynamic polarization. Results for the equivalent commercial wrought counterpart, AA2024-T3, are also presented for comparison. Similar corrosion performance was observed for both as sintered and AA2024-T3 samples, while corrosion resistance of the PM materials was improved by the heat treatment, especially in the T4 state.

  • PDF

A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle (사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구)

  • Leem, Byoung-Ill;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.24-28
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle (사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구)

  • Leem, Byoung-Ill;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.6-10
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.